Summary
The manipulation of autophagy has an enormous therapeutic potential to revolutionize the way we currently treat cancers, neurodegenerative disorders, inflammatory and infectious diseases. Despite the great promises made by pioneering medical studies, the still limited applied research on autophagy has hampered the translation of fundamental knowledge into clinical-grade products and improved healthcare. Applied autophagy research is essential to understand the roles of autophagy in the different physiological and pathological situations, to generate (disease) models and develop biomarkers and assays to assess its progress.
The goal of the ETN Driving next generation autophagy researchers towards translation (DRIVE) is to train young scientists to fill this gap. DRIVE will equip its ESRs with an unique combination of knowledge and experimental expertise that are brought together in this consortium by the different partners. The realization of their projects in applied autophagy research will benefit of an exceptional interdisciplinary platform integrating cell biology, biochemistry, molecular biology, genetics, chemistry and “omics” approaches. In addition, DRIVE ESRs will acquire competencies to exploit the results for the development of products and techniques of commercial value. These ESRs will also be trained in disseminating results and knowledge through modern channels of communication.
The goal of the ETN Driving next generation autophagy researchers towards translation (DRIVE) is to train young scientists to fill this gap. DRIVE will equip its ESRs with an unique combination of knowledge and experimental expertise that are brought together in this consortium by the different partners. The realization of their projects in applied autophagy research will benefit of an exceptional interdisciplinary platform integrating cell biology, biochemistry, molecular biology, genetics, chemistry and “omics” approaches. In addition, DRIVE ESRs will acquire competencies to exploit the results for the development of products and techniques of commercial value. These ESRs will also be trained in disseminating results and knowledge through modern channels of communication.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/765912 |
Start date: | 01-11-2017 |
End date: | 30-04-2022 |
Total budget - Public funding: | 3 890 064,96 Euro - 3 890 064,00 Euro |
Cordis data
Original description
The manipulation of autophagy has an enormous therapeutic potential to revolutionize the way we currently treat cancers, neurodegenerative disorders, inflammatory and infectious diseases. Despite the great promises made by pioneering medical studies, the still limited applied research on autophagy has hampered the translation of fundamental knowledge into clinical-grade products and improved healthcare. Applied autophagy research is essential to understand the roles of autophagy in the different physiological and pathological situations, to generate (disease) models and develop biomarkers and assays to assess its progress.The goal of the ETN Driving next generation autophagy researchers towards translation (DRIVE) is to train young scientists to fill this gap. DRIVE will equip its ESRs with an unique combination of knowledge and experimental expertise that are brought together in this consortium by the different partners. The realization of their projects in applied autophagy research will benefit of an exceptional interdisciplinary platform integrating cell biology, biochemistry, molecular biology, genetics, chemistry and “omics” approaches. In addition, DRIVE ESRs will acquire competencies to exploit the results for the development of products and techniques of commercial value. These ESRs will also be trained in disseminating results and knowledge through modern channels of communication.
Status
CLOSEDCall topic
MSCA-ITN-2017Update Date
28-04-2024
Images
No images available.
Geographical location(s)