FCS-BACSUB | Unravelling lipid dynamics in bacteria

Summary
Bacteria are fascinating organism, relatively and yet not fully understood. Fundamental research on bacteria led across the years to major technological breakthroughs like the discovery of genetic editing with CRISPR-Cas9. Besides, resistance of bacteria to antibiotics is becoming a growing public health concern, raising the need for a better understanding of the molecular mechanisms involved. We propose here to further our understanding of the molecular biology of bacteria by studying the dynamic of lipids in bacterial (B. Subtilis) membranes. In eukaryotic cells, it was found that lipid dynamics can reveal the micro- and nanoscale organisation of the plasma membrane, revealing a dynamic interplay between membrane components such as lipids, membrane proteins, and the actin cytoskeleton. Bacterial membranes were thought until recently to be much simpler, but accumulating evidence over the last ten years suggested that they too were highly heterogeneous and dynamic. However, very few studies so far focused on the question of lipid dynamics, in part because of the experimental complexity of such measurements. To address this, we will transfer new technologies based on fluorescence correlation spectroscopy (FCS), that were developed mainly for eukaryotic research, to the field of microbiology. With this unique methodology, we will answer a series of fundamental open questions: how do bacterial membranes organise at the nanoscale? Do they exhibit transient lipid-mediated interactions (called lipid rafts) as is thought to be the case in eukaryotes? Does MreB, bacterial equivalent of actin, also compartmentalises lipid diffusion? Answering these questions will help us build a holistic picture of the mechanisms associated with essential bacterial processes such as biofilm formation or antibiotic resistance, which will have far-reaching implications in both biology and medicine.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030628
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 184 707,84 Euro - 184 707,00 Euro
Cordis data

Original description

Bacteria are fascinating organism, relatively and yet not fully understood. Fundamental research on bacteria led across the years to major technological breakthroughs like the discovery of genetic editing with CRISPR-Cas9. Besides, resistance of bacteria to antibiotics is becoming a growing public health concern, raising the need for a better understanding of the molecular mechanisms involved. We propose here to further our understanding of the molecular biology of bacteria by studying the dynamic of lipids in bacterial (B. Subtilis) membranes. In eukaryotic cells, it was found that lipid dynamics can reveal the micro- and nanoscale organisation of the plasma membrane, revealing a dynamic interplay between membrane components such as lipids, membrane proteins, and the actin cytoskeleton. Bacterial membranes were thought until recently to be much simpler, but accumulating evidence over the last ten years suggested that they too were highly heterogeneous and dynamic. However, very few studies so far focused on the question of lipid dynamics, in part because of the experimental complexity of such measurements. To address this, we will transfer new technologies based on fluorescence correlation spectroscopy (FCS), that were developed mainly for eukaryotic research, to the field of microbiology. With this unique methodology, we will answer a series of fundamental open questions: how do bacterial membranes organise at the nanoscale? Do they exhibit transient lipid-mediated interactions (called lipid rafts) as is thought to be the case in eukaryotes? Does MreB, bacterial equivalent of actin, also compartmentalises lipid diffusion? Answering these questions will help us build a holistic picture of the mechanisms associated with essential bacterial processes such as biofilm formation or antibiotic resistance, which will have far-reaching implications in both biology and medicine.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships