AMRAB | Adhesion Multiphysics of Rubberised Asphalt Binders

Summary
AMRAB aims to train a talented research Fellow through an interdisciplinary project focused on modelling the coupled adhesion multiphysics in the interfacial zone between crumb rubber modified binders (CRMB) and mineral aggregates under various environmental conditions. The primary deliverables of the project include a fundamental understanding of adhesion mechanisms, an accurate prediction framework and evaluation protocol for the adhesive properties of CRMB, and an implementation of industrial adhesion promoters and technologies in rubberised road construction. The Fellow will receive intensive technical training from both academic and industrial hosts, which will substantially extend his expertise from construction asphalt materials to a multidisciplinary field of chemistry (UoN), mechanics and computational modelling (Aston and KTH), experimental characterisation (UoN and RWTH) and road engineering applications (Total and AI). The Fellow will also receive inter-sectoral and professional skills training in project management, outreach, networking, and intellectual property protection. The benefits brought by AMRAB is represented by strengthening the EU industry leadership in adhesive material innovation and aiding the EU engineers in rubberised asphalt material selections, road structural design, and techno-economic analysis. The implementation of adhesion promoters and technologies for CRMB in rubberised road infrastructures will extend the road service life, increase the recycling of waste tires, and ultimately reduce the greenhouse gas emissions and consumption of petroleum bitumen. Uniquely, the project will enable the Fellow to obtain interdisciplinary knowledge and inter-sectoral complementary skills by building a new and exciting research field, which will pave a solid foundation for the Fellow towards his career of being an independent expert researcher in the areas of infrastructure sustainability and construction materials at a top European university.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101024139
Start date: 01-10-2021
End date: 29-11-2023
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

AMRAB aims to train a talented research Fellow through an interdisciplinary project focused on modelling the coupled adhesion multiphysics in the interfacial zone between crumb rubber modified binders (CRMB) and mineral aggregates under various environmental conditions. The primary deliverables of the project include a fundamental understanding of adhesion mechanisms, an accurate prediction framework and evaluation protocol for the adhesive properties of CRMB, and an implementation of industrial adhesion promoters and technologies in rubberised road construction. The Fellow will receive intensive technical training from both academic and industrial hosts, which will substantially extend his expertise from construction asphalt materials to a multidisciplinary field of chemistry (UoN), mechanics and computational modelling (Aston and KTH), experimental characterisation (UoN and RWTH) and road engineering applications (Total and AI). The Fellow will also receive inter-sectoral and professional skills training in project management, outreach, networking, and intellectual property protection. The benefits brought by AMRAB is represented by strengthening the EU industry leadership in adhesive material innovation and aiding the EU engineers in rubberised asphalt material selections, road structural design, and techno-economic analysis. The implementation of adhesion promoters and technologies for CRMB in rubberised road infrastructures will extend the road service life, increase the recycling of waste tires, and ultimately reduce the greenhouse gas emissions and consumption of petroleum bitumen. Uniquely, the project will enable the Fellow to obtain interdisciplinary knowledge and inter-sectoral complementary skills by building a new and exciting research field, which will pave a solid foundation for the Fellow towards his career of being an independent expert researcher in the areas of infrastructure sustainability and construction materials at a top European university.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships