RNA-NetHOX | Decoding Hox specificity from mRNA processing networks

Summary
Cell fate decisions is governed by the fine-tuned regulation of gene expression in all living organism. It is mostly realized by the cell-type specific assembly of regulatory networks consisting of Transcription Factors (TFs) and cofactors proteins. Thus, a multitude of combination between TF and cofactors will be set up to regulate the transcription in a precise spatiotemporal manner. The evolutionary conserved class of Hox TFs perfectly illustrates how a restricted number of TFs is able to promote diverse transcriptional programs. Hox proteins are involved in the specification of body forms and organs in animals. Despite this notorious architectural role, their operating mode remains controversial: they recognize similar DNA-binding sites in vitro, in sharp contrast with their specific functions in vivo. Thus, Hox proteins are likely acting with cofactors in vivo, and their identification was the core of my post-doctoral work. Notably, it revealed that mRNA-processing related proteins could constitute an important class of Hox cofactors. Thus, Hox specificity could also rely on mRNA-processing regulation, providing insightful molecular entry points to understand Hox function in development and disease. My research project aims at elucidating this novel facet of Hox activity. I propose two complementary aims developed in two model systems in order to decipher the molecular and functional impact of Hox-dependent mRNA processing regulation. I will decipher how interactions with splicing factors impact on the Hox functions in vivo in Drosophila embryos. Moreover, I will enlarge the cooperative role of HOX and splicing factors by performing large-scale interaction-screens of several human HOX and 2000 RNA-regulatory proteins in various normal and pathological cell contexts. Overall, my research program has the ambition to open novel perspectives on the role of TFs at the mRNA-regulatory level.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101024467
Start date: 01-01-2022
End date: 31-12-2023
Total budget - Public funding: 184 707,84 Euro - 116 953,00 Euro
Cordis data

Original description

Cell fate decisions is governed by the fine-tuned regulation of gene expression in all living organism. It is mostly realized by the cell-type specific assembly of regulatory networks consisting of Transcription Factors (TFs) and cofactors proteins. Thus, a multitude of combination between TF and cofactors will be set up to regulate the transcription in a precise spatiotemporal manner. The evolutionary conserved class of Hox TFs perfectly illustrates how a restricted number of TFs is able to promote diverse transcriptional programs. Hox proteins are involved in the specification of body forms and organs in animals. Despite this notorious architectural role, their operating mode remains controversial: they recognize similar DNA-binding sites in vitro, in sharp contrast with their specific functions in vivo. Thus, Hox proteins are likely acting with cofactors in vivo, and their identification was the core of my post-doctoral work. Notably, it revealed that mRNA-processing related proteins could constitute an important class of Hox cofactors. Thus, Hox specificity could also rely on mRNA-processing regulation, providing insightful molecular entry points to understand Hox function in development and disease. My research project aims at elucidating this novel facet of Hox activity. I propose two complementary aims developed in two model systems in order to decipher the molecular and functional impact of Hox-dependent mRNA processing regulation. I will decipher how interactions with splicing factors impact on the Hox functions in vivo in Drosophila embryos. Moreover, I will enlarge the cooperative role of HOX and splicing factors by performing large-scale interaction-screens of several human HOX and 2000 RNA-regulatory proteins in various normal and pathological cell contexts. Overall, my research program has the ambition to open novel perspectives on the role of TFs at the mRNA-regulatory level.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships