Summary
Aviation contributes to more than 2% of global greenhouse gas (GHG) emissions, in the absence of further measures, carbon dioxide (CO2) emissions from international aviation are estimated to almost quadruple by 2050 compared to 2010. Efforts to reduce GHG through the development of alternatives to traditional fossil-fuelled thermal engines have made great strides. Yet large capacity, long-range electric vehicles with operating speeds similar to or faster than current commercial vehicles are not expected to become feasible for several decades due to the limitations of battery energy density and cost. An alternative short-term solution that is being investigated in Purdue University by Prof. Paniagua with intense interest worldwide is to utilize a rotating deto-nation engines (RDE) to improve the efficiency and reduce the size/weight of current thermal gas turbines. If utilized with hydrogen, with high energy-to-mass ratio and robust detonation properties, RDE will provide the best chance to realize long-range, high-payload flight with zero greenhouse gas emissions . However, the development and performance of a high-efficiency RDE is inhibited by two main fluid dynamic problems: the flow separation caused by high pressure gradients, and the unstarting phenomena across the internal turbine pas-sages. The numerical solution, analytical analysis and control of those problems is the main objective of FLOWCID.
FLOWCID proposes a 24-month long outgoing phase (and 12 months return phase) of Prof. Eusebio Valero (the Researcher) from Universidad Politécnica de Madrid UPM (the Beneficiary), to Zucrow Labs, at Purdue University, USA (the Host) under the supervision of Prof. Guillermo Paniagua (the Supervisor).
FLOWCID proposes a 24-month long outgoing phase (and 12 months return phase) of Prof. Eusebio Valero (the Researcher) from Universidad Politécnica de Madrid UPM (the Beneficiary), to Zucrow Labs, at Purdue University, USA (the Host) under the supervision of Prof. Guillermo Paniagua (the Supervisor).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101019137 |
Start date: | 01-08-2021 |
End date: | 31-07-2024 |
Total budget - Public funding: | 263 732,16 Euro - 263 732,00 Euro |
Cordis data
Original description
Aviation contributes to more than 2% of global greenhouse gas (GHG) emissions, in the absence of further measures, carbon dioxide (CO2) emissions from international aviation are estimated to almost quadruple by 2050 compared to 2010. Efforts to reduce GHG through the development of alternatives to traditional fossil-fuelled thermal engines have made great strides. Yet large capacity, long-range electric vehicles with operating speeds similar to or faster than current commercial vehicles are not expected to become feasible for several decades due to the limitations of battery energy density and cost. An alternative short-term solution that is being investigated in Purdue University by Prof. Paniagua with intense interest worldwide is to utilize a rotating deto-nation engines (RDE) to improve the efficiency and reduce the size/weight of current thermal gas turbines. If utilized with hydrogen, with high energy-to-mass ratio and robust detonation properties, RDE will provide the best chance to realize long-range, high-payload flight with zero greenhouse gas emissions . However, the development and performance of a high-efficiency RDE is inhibited by two main fluid dynamic problems: the flow separation caused by high pressure gradients, and the unstarting phenomena across the internal turbine pas-sages. The numerical solution, analytical analysis and control of those problems is the main objective of FLOWCID.FLOWCID proposes a 24-month long outgoing phase (and 12 months return phase) of Prof. Eusebio Valero (the Researcher) from Universidad Politécnica de Madrid UPM (the Beneficiary), to Zucrow Labs, at Purdue University, USA (the Host) under the supervision of Prof. Guillermo Paniagua (the Supervisor).
Status
SIGNEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping