Back2Sea | Back to the sea: Axial evolution in secondarily aquatic mammals

Summary
Unravelling adaptations and evolutionary impacts of major ecological transitions remains a central theme in evolutionary biology. Secondary invasions of the aquatic realm by land-dwelling tetrapods are one such example, involving a shift from limb-based to axial-driven locomotion and accompanying reorganization of the postcranial skeleton. Modifications of limbs to flippers are well documented, yet, adaptations of the backbone associated with these transitions remain poorly understood. Mammals have reinvaded water numerous times, using a variety of swimming modes, and thus provide an ideal system for studying axial evolution in land-to-water transitions. The Back2Sea project will investigate the impact of the secondary invasion of the aquatic realm on the mammalian backbone by examining: (i) vertebral morphology and function, (ii) backbone regionalisation and modularity, and (iii) mode and tempo of axial evolution. To achieve this, Back2Sea will quantify form and function at the organismic scale using biomechanical experimentation, and combine this with data on macroevolutionary patterns of vertebral morphology across a wide variety of terrestrial, aquatic, and semiaquatic extant and fossil mammals. Analyses conducted in a broad phylogenetic and quantitative evolutionary context will address fundamental questions about the patterns and processes driving land-to-water transitions. This multidisciplinary approach will allow the Fellow to expand upon her previous work on cetaceans, and acquire a broad set of new skills including biomechanical experimentation, use of fossil specimens, and cutting-edge computational methods. By developing these skills, enhancing her marine mammal knowledge, and establishing new research networks, Back2Sea will lay the foundation for building the Fellow's research niche as a future leader in marine tetrapod evolutionary dynamics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101023931
Start date: 01-10-2021
End date: 30-09-2024
Total budget - Public funding: 271 732,80 Euro - 271 732,00 Euro
Cordis data

Original description

Unravelling adaptations and evolutionary impacts of major ecological transitions remains a central theme in evolutionary biology. Secondary invasions of the aquatic realm by land-dwelling tetrapods are one such example, involving a shift from limb-based to axial-driven locomotion and accompanying reorganization of the postcranial skeleton. Modifications of limbs to flippers are well documented, yet, adaptations of the backbone associated with these transitions remain poorly understood. Mammals have reinvaded water numerous times, using a variety of swimming modes, and thus provide an ideal system for studying axial evolution in land-to-water transitions. The Back2Sea project will investigate the impact of the secondary invasion of the aquatic realm on the mammalian backbone by examining: (i) vertebral morphology and function, (ii) backbone regionalisation and modularity, and (iii) mode and tempo of axial evolution. To achieve this, Back2Sea will quantify form and function at the organismic scale using biomechanical experimentation, and combine this with data on macroevolutionary patterns of vertebral morphology across a wide variety of terrestrial, aquatic, and semiaquatic extant and fossil mammals. Analyses conducted in a broad phylogenetic and quantitative evolutionary context will address fundamental questions about the patterns and processes driving land-to-water transitions. This multidisciplinary approach will allow the Fellow to expand upon her previous work on cetaceans, and acquire a broad set of new skills including biomechanical experimentation, use of fossil specimens, and cutting-edge computational methods. By developing these skills, enhancing her marine mammal knowledge, and establishing new research networks, Back2Sea will lay the foundation for building the Fellow's research niche as a future leader in marine tetrapod evolutionary dynamics.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships