THOR | Towards Higher Levels of Autonomy and Robustness in Space Operations through Uncertainty Management and Quantification

Summary
The overarching goal of the THOR research project is to augment space operations autonomy and robustness through uncertainty management and quantification. This involves a bottom up process where novel uncertainty estimation and propagation techniques will be employed to be subsequently embedded within a stochastic robust controller. The main outcome will be a robust non-linear non-gaussian integrated guidance, navigation and control strategy with both model-based and exogenous disturbance estimation. Since both uncertainty sources are quantified, a more reliable and efficient space operation management and planning will be obtained. The THOR scenario relates to asteroid exploration which is one of the most challenging and uncertain space operations nowadays. This is due to the limited asteroid data known prior to the arrival if the body is visited for the first time. Two mission phases can be clearly distinguished: on-orbit data collection where most of the uncertainty will be removed by estimation; then, an entry descent and landing critical phase where the stochastic robust controller will use the previous uncertainty knowledge, is envisioned. The THOR project methodology and results are expected to advance current state-of-the-art in autonomous spacecraft guidance, navigation and control, thus enabling more advanced space exploration mission concepts with a higher scientific return, without loss of generality.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101025257
Start date: 01-11-2021
End date: 30-04-2024
Total budget - Public funding: 204 415,68 Euro - 204 415,00 Euro
Cordis data

Original description

The overarching goal of the THOR research project is to augment space operations autonomy and robustness through uncertainty management and quantification. This involves a bottom up process where novel uncertainty estimation and propagation techniques will be employed to be subsequently embedded within a stochastic robust controller. The main outcome will be a robust non-linear non-gaussian integrated guidance, navigation and control strategy with both model-based and exogenous disturbance estimation. Since both uncertainty sources are quantified, a more reliable and efficient space operation management and planning will be obtained. The THOR scenario relates to asteroid exploration which is one of the most challenging and uncertain space operations nowadays. This is due to the limited asteroid data known prior to the arrival if the body is visited for the first time. Two mission phases can be clearly distinguished: on-orbit data collection where most of the uncertainty will be removed by estimation; then, an entry descent and landing critical phase where the stochastic robust controller will use the previous uncertainty knowledge, is envisioned. The THOR project methodology and results are expected to advance current state-of-the-art in autonomous spacecraft guidance, navigation and control, thus enabling more advanced space exploration mission concepts with a higher scientific return, without loss of generality.

Status

TERMINATED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships