Summary
Subsurface modelling using geoscientific data is essential to understand the Earth and to sustainably manage natural resources. Geology and geophysics are two critical aspects of such modelling. Geological and geophysical models have different resolutions and are sensitive to different features. Considering only geological or geophysical aspects often leads to contradictions as creating an Earth model is a highly non-unique problem. In addition, the sensitivity of the data is limited and many objects cannot be differentiated by a single discipline. The only way to address this is solving the longstanding challenge of integrating of geological data and knowledge (orientation data, contacts and ontologies) and geophysical methods (physical fields). Recent techniques usually focus on features the data is sensitive to and merely use one discipline to falsify hypotheses from the other. Such approach prevents considering the full range of potential outcomes, and fails to exploit the sensitivity of both approaches. This project proposes a different philosophy to solve the challenge of connecting geological and geophysical modelling. It first involves the development of a novel method integrating the two model types in a single framework giving them equal importance. Geological and geophysical data will be modelled simultaneously through an implicit functional mapping one domain into the other by linking their respective models. This will allow the simultaneous recovery of compatible geological and geophysical models. Secondly, this project will use a new hybrid deterministic-stochastic optimisation technique to explore the range of subsurface scenarios to estimate the diversity of features that cannot be differentiated based on the available data. Thirdly, after proof-of-concept, the method will be applied to two cases: imaging of a mantle uplift in the Pyrenees Mountains (France/Spain), and study of potential new subsurface scenarios around the Kevitsa mine (Finland).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101032994 |
Start date: | 23-08-2021 |
End date: | 22-08-2023 |
Total budget - Public funding: | 184 707,84 Euro - 184 707,00 Euro |
Cordis data
Original description
Subsurface modelling using geoscientific data is essential to understand the Earth and to sustainably manage natural resources. Geology and geophysics are two critical aspects of such modelling. Geological and geophysical models have different resolutions and are sensitive to different features. Considering only geological or geophysical aspects often leads to contradictions as creating an Earth model is a highly non-unique problem. In addition, the sensitivity of the data is limited and many objects cannot be differentiated by a single discipline. The only way to address this is solving the longstanding challenge of integrating of geological data and knowledge (orientation data, contacts and ontologies) and geophysical methods (physical fields). Recent techniques usually focus on features the data is sensitive to and merely use one discipline to falsify hypotheses from the other. Such approach prevents considering the full range of potential outcomes, and fails to exploit the sensitivity of both approaches. This project proposes a different philosophy to solve the challenge of connecting geological and geophysical modelling. It first involves the development of a novel method integrating the two model types in a single framework giving them equal importance. Geological and geophysical data will be modelled simultaneously through an implicit functional mapping one domain into the other by linking their respective models. This will allow the simultaneous recovery of compatible geological and geophysical models. Secondly, this project will use a new hybrid deterministic-stochastic optimisation technique to explore the range of subsurface scenarios to estimate the diversity of features that cannot be differentiated based on the available data. Thirdly, after proof-of-concept, the method will be applied to two cases: imaging of a mantle uplift in the Pyrenees Mountains (France/Spain), and study of potential new subsurface scenarios around the Kevitsa mine (Finland).Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping