VolatileOrigin | Insights into Earth’s volatile origin from krypton and xenon isotopic and elemental analyses of meteorites and mantle-derived samples

Summary
The presence of volatile elements such as carbon, nitrogen, water, noble gases, on terrestrial planets is a requirement for planet habitability, yet their origin is still highly debated. Noble gases are invaluable tracers of volatile sources due to their inertness, in particular their non-radiogenic isotopes have kept remnant signatures of planetary accretion. Krypton and xenon are mighty tools to distinguish between chondritic and solar volatile sources due to the distinct isotopic compositions of these end-members. However, the heavy noble gas (Kr, Xe) compositions of the Earth’s mantle is poorly determined. Hence, the Earth’s mantle volatile history remains largely unknown. The objectives of this project are to precisely measure the non-radiogenic Kr and Xe isotopes in mantle-derived samples, including mid-ocean ridge basalts and diamonds, and in meteorites of different types in order to better understand Earth’s volatile origin. Determining the compositions of mid-ocean ridge and diamond samples will allow to characterize the extent of mantle Kr and Xe heterogeneities, introduced through progressive atmospheric noble gas recycling via subduction, and, hence to identify the source(s) of these volatiles in the mantle. Precise bulk meteorite data for the non-radiogenic Kr and Xe isotopes are incomplete and will be crucial in our understanding of the measured mantle compositions to fingerprint the volatile sources. This project will use a novel protocol for the specific measurements of these isotopes in mantle-derived samples associated with noble gas mass spectrometry. The MSCA fellowship represents a unique opportunity for me to learn new analytical skills in cosmochemistry, to improve my soft skills and to secure my fruitful reintegration in Europe. I will transfer to the host lab my expertise of mantle geochemistry. On the whole, this project will strengthen my scientific independence, taking me closer to achieve an outstanding academic position in Europe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101022657
Start date: 01-11-2021
End date: 01-04-2024
Total budget - Public funding: 203 149,44 Euro - 203 149,00 Euro
Cordis data

Original description

The presence of volatile elements such as carbon, nitrogen, water, noble gases, on terrestrial planets is a requirement for planet habitability, yet their origin is still highly debated. Noble gases are invaluable tracers of volatile sources due to their inertness, in particular their non-radiogenic isotopes have kept remnant signatures of planetary accretion. Krypton and xenon are mighty tools to distinguish between chondritic and solar volatile sources due to the distinct isotopic compositions of these end-members. However, the heavy noble gas (Kr, Xe) compositions of the Earth’s mantle is poorly determined. Hence, the Earth’s mantle volatile history remains largely unknown. The objectives of this project are to precisely measure the non-radiogenic Kr and Xe isotopes in mantle-derived samples, including mid-ocean ridge basalts and diamonds, and in meteorites of different types in order to better understand Earth’s volatile origin. Determining the compositions of mid-ocean ridge and diamond samples will allow to characterize the extent of mantle Kr and Xe heterogeneities, introduced through progressive atmospheric noble gas recycling via subduction, and, hence to identify the source(s) of these volatiles in the mantle. Precise bulk meteorite data for the non-radiogenic Kr and Xe isotopes are incomplete and will be crucial in our understanding of the measured mantle compositions to fingerprint the volatile sources. This project will use a novel protocol for the specific measurements of these isotopes in mantle-derived samples associated with noble gas mass spectrometry. The MSCA fellowship represents a unique opportunity for me to learn new analytical skills in cosmochemistry, to improve my soft skills and to secure my fruitful reintegration in Europe. I will transfer to the host lab my expertise of mantle geochemistry. On the whole, this project will strengthen my scientific independence, taking me closer to achieve an outstanding academic position in Europe.

Status

TERMINATED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships