Summary
Emerging bioelectronic medical devices, such as brain-spine interfaces (BSI), are improving treatments of the pathophysiological processes at the root of sensorimotor and cognitive disorders. Despite the emerging success of BSIs, the biological and electrophysiological mechanisms underlying treatments remain poorly understood. A significant barrier to their description is the lack of minimally invasive BSIs for real-time, closed-loop monitoring of electrophysiological markers involved in the stabilization and regeneration of neural pathways. REFLEX seeks to overcome the power and packaging barriers that have held back real-time monitoring of neural pathways by leveraging two innovative technologies: (1) the picojoule/bit energy efficiency of wireless backscatter communication and (2) the conformable, compatible circuit boards. REFLEX will enable high spatial and temporal resolution monitoring of neural pathways by providing up to 16 channels for electrophysiological recording at up to 20 kSamples/sec with 16-bit resolution per channel (≥5Mbps total data rate) at
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101027005 |
Start date: | 01-06-2021 |
End date: | 16-06-2023 |
Total budget - Public funding: | 191 149,44 Euro - 191 149,00 Euro |
Cordis data
Original description
Emerging bioelectronic medical devices, such as brain-spine interfaces (BSI), are improving treatments of the pathophysiological processes at the root of sensorimotor and cognitive disorders. Despite the emerging success of BSIs, the biological and electrophysiological mechanisms underlying treatments remain poorly understood. A significant barrier to their description is the lack of minimally invasive BSIs for real-time, closed-loop monitoring of electrophysiological markers involved in the stabilization and regeneration of neural pathways. REFLEX seeks to overcome the power and packaging barriers that have held back real-time monitoring of neural pathways by leveraging two innovative technologies: (1) the picojoule/bit energy efficiency of wireless backscatter communication and (2) the conformable, compatible circuit boards. REFLEX will enable high spatial and temporal resolution monitoring of neural pathways by providing up to 16 channels for electrophysiological recording at up to 20 kSamples/sec with 16-bit resolution per channel (≥5Mbps total data rate) atStatus
TERMINATEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping