NewPropChem | New Frontiers in Propellane Chemistry

Summary
Propellanes are molecules of high importance as precursors to valuable cage molecules in pharmaceutical and materials research. For smaller-ring propellanes, ubiquitous reactivity can be displayed towards anions, radicals, and cations; however, the theoretical basis for this unusual behaviour has only recently emerged, which is based on the ability of small ring propellanes to delocalise electron density away from the electron-rich central C–C bond onto the peripheral carbon atom p orbitals both in the ground state, and during reactions. In this project we develop chemical tools to test this theoretical model, offering experimental support and characterising the change in structure and electronics during ring opening processes. We further develop new synthetic methodology to access high-value (but hard to access) chiral propellane ring-opening products, and explore new modes of propellane reactivity by employing novel catalytic concepts to activate the central C–C bond. We use a theoretical 'carbene' description of [1.1.1]propellane to open up access to bridge-substituted propellanes, which represent a 'holy grail' of the field, and also explore methods to control the dimerisation or oligomerisation of these molecules. Collectively, using the most up to date theoretical models (and in collaboration with theoretical chemists) we aim to develop a new frontier of propellane chemistry, which has the potential for broad impact on its many applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101020227
Start date: 21-02-2022
End date: 20-02-2024
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

Propellanes are molecules of high importance as precursors to valuable cage molecules in pharmaceutical and materials research. For smaller-ring propellanes, ubiquitous reactivity can be displayed towards anions, radicals, and cations; however, the theoretical basis for this unusual behaviour has only recently emerged, which is based on the ability of small ring propellanes to delocalise electron density away from the electron-rich central C–C bond onto the peripheral carbon atom p orbitals both in the ground state, and during reactions. In this project we develop chemical tools to test this theoretical model, offering experimental support and characterising the change in structure and electronics during ring opening processes. We further develop new synthetic methodology to access high-value (but hard to access) chiral propellane ring-opening products, and explore new modes of propellane reactivity by employing novel catalytic concepts to activate the central C–C bond. We use a theoretical 'carbene' description of [1.1.1]propellane to open up access to bridge-substituted propellanes, which represent a 'holy grail' of the field, and also explore methods to control the dimerisation or oligomerisation of these molecules. Collectively, using the most up to date theoretical models (and in collaboration with theoretical chemists) we aim to develop a new frontier of propellane chemistry, which has the potential for broad impact on its many applications.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships