Summary
The recent advent of active high-density implantable neural probes based on CMOS technology is a big leap forward in neuroscience. Unprecedentedly, these new probes provide simultaneous access to several thousands of single-neurons in different brain circuits. Although realized with different circuit’s architectures, such devices combine the use of standard CMOS and MEMS technologies to realize monolithic active dense probes that integrate into the same substrate hundreds of closely spaced microelectrodes together with electronic circuits for recording extracellular bioelectrical signals. However, despite their unique value, current CMOS-probes are not yet adapted for chronically stable implants and this is a major drawback both for neuroscience research as well as for growing potential clinical applications in fields such as brain-machine-interfaces or neuroprosthetics.
An emerging hypothesis to minimize tissue-reactions and improve chronic stability of implantable probes consists in downscaling the cross-sectional sizes of their shafts as well as the overall system size. This fellowship proposes a deep study of this hypothesis by exploiting key advantages of monolithic CMOS based neural probes together with the optimization of circuits, materials and microfabrication processes. I will exploit my background in MEMs technologies and acquire new expertise in neuroscience to evaluate solutions for reducing CMOS shanks dimensions (20-80 µm width, 15-30 µm thick), strategies to improve tissue-materials interfaces, and to assess the effects of these features on brain tissue responses and recording performances. This will lead to ChroMOS probes with a very thin and uniform width (tens of microns) through all the shaft, and with electrode densities up to 1000 sites/mm2. This can lead to remarkably stable probe’s implants with large-scale single-neuron recording capabilities, far behind current technologies.
An emerging hypothesis to minimize tissue-reactions and improve chronic stability of implantable probes consists in downscaling the cross-sectional sizes of their shafts as well as the overall system size. This fellowship proposes a deep study of this hypothesis by exploiting key advantages of monolithic CMOS based neural probes together with the optimization of circuits, materials and microfabrication processes. I will exploit my background in MEMs technologies and acquire new expertise in neuroscience to evaluate solutions for reducing CMOS shanks dimensions (20-80 µm width, 15-30 µm thick), strategies to improve tissue-materials interfaces, and to assess the effects of these features on brain tissue responses and recording performances. This will lead to ChroMOS probes with a very thin and uniform width (tens of microns) through all the shaft, and with electrode densities up to 1000 sites/mm2. This can lead to remarkably stable probe’s implants with large-scale single-neuron recording capabilities, far behind current technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/896996 |
Start date: | 01-11-2020 |
End date: | 31-10-2022 |
Total budget - Public funding: | 183 473,28 Euro - 183 473,00 Euro |
Cordis data
Original description
The recent advent of active high-density implantable neural probes based on CMOS technology is a big leap forward in neuroscience. Unprecedentedly, these new probes provide simultaneous access to several thousands of single-neurons in different brain circuits. Although realized with different circuit’s architectures, such devices combine the use of standard CMOS and MEMS technologies to realize monolithic active dense probes that integrate into the same substrate hundreds of closely spaced microelectrodes together with electronic circuits for recording extracellular bioelectrical signals. However, despite their unique value, current CMOS-probes are not yet adapted for chronically stable implants and this is a major drawback both for neuroscience research as well as for growing potential clinical applications in fields such as brain-machine-interfaces or neuroprosthetics.An emerging hypothesis to minimize tissue-reactions and improve chronic stability of implantable probes consists in downscaling the cross-sectional sizes of their shafts as well as the overall system size. This fellowship proposes a deep study of this hypothesis by exploiting key advantages of monolithic CMOS based neural probes together with the optimization of circuits, materials and microfabrication processes. I will exploit my background in MEMs technologies and acquire new expertise in neuroscience to evaluate solutions for reducing CMOS shanks dimensions (20-80 µm width, 15-30 µm thick), strategies to improve tissue-materials interfaces, and to assess the effects of these features on brain tissue responses and recording performances. This will lead to ChroMOS probes with a very thin and uniform width (tens of microns) through all the shaft, and with electrode densities up to 1000 sites/mm2. This can lead to remarkably stable probe’s implants with large-scale single-neuron recording capabilities, far behind current technologies.
Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)