PDGeoFF | Polyhedral Discretisation Methods for Geomechanical Simulation of Faults and Fractures in Poroelastic Media

Summary
Understanding subsurface geological processes is crucial for the prevention of environmental damage and the development of renewable alternatives for energy generation. The key for the successful assessment of subsurface activities is the ability to perform accurate numerical simulations able to predict the effects of soil exploitation. Envisioned research activities will focus on the design and analysis of advanced nonconforming polyhedral discretisation methods for simulating fault mechanics and fracture propagation in poroelastic media. The main goal is to provide an efficient mathematical and numerical framework to evaluate and prevent risks related to several human geological activities. In this project, we aim at developing and analysing new nonconforming polyhedral finite element methods able to tame the mathematical and numerical challenges that have to be accounted for in geomechanical modelling: the geometric complexity arising from the presence of various layers and fractures, the strong coupling between the flow and the mechanics, and the possible rough variations of the physical parameters. In this context, for inner interface and moving discontinuities problems, such as fault slip and fracture growth, the versatility of polyhedral finite element methods allows to successfully tame the geometric complexity as well as facilitate mesh adaptivity and provide a greater robustness with respect to mesh distortions. The research will target the investigation of the models describing fault mechanics and the interaction between propagating fractures and fluid flow. The computational performance of the proposed discretisation schemes will be assessed on a complete panel of realistic test cases.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/896616
Start date: 01-07-2020
End date: 30-06-2022
Total budget - Public funding: 171 473,28 Euro - 171 473,00 Euro
Cordis data

Original description

Understanding subsurface geological processes is crucial for the prevention of environmental damage and the development of renewable alternatives for energy generation. The key for the successful assessment of subsurface activities is the ability to perform accurate numerical simulations able to predict the effects of soil exploitation. Envisioned research activities will focus on the design and analysis of advanced nonconforming polyhedral discretisation methods for simulating fault mechanics and fracture propagation in poroelastic media. The main goal is to provide an efficient mathematical and numerical framework to evaluate and prevent risks related to several human geological activities. In this project, we aim at developing and analysing new nonconforming polyhedral finite element methods able to tame the mathematical and numerical challenges that have to be accounted for in geomechanical modelling: the geometric complexity arising from the presence of various layers and fractures, the strong coupling between the flow and the mechanics, and the possible rough variations of the physical parameters. In this context, for inner interface and moving discontinuities problems, such as fault slip and fracture growth, the versatility of polyhedral finite element methods allows to successfully tame the geometric complexity as well as facilitate mesh adaptivity and provide a greater robustness with respect to mesh distortions. The research will target the investigation of the models describing fault mechanics and the interaction between propagating fractures and fluid flow. The computational performance of the proposed discretisation schemes will be assessed on a complete panel of realistic test cases.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019