TALL | Targeted Antigen deLivery to Langerin: molecular basis of recognition and its implication in antigen uptake, processing and presentation to T cells

Summary
The skin is an attractive target in human vaccination harboring a dense network of immune cells. For instance, Lagerhans cells (LCs) are specialized in the identification of antigens derived from pathogens, and their subsequent internalization and presentation to induce a T cell response. The aim of the present proposal is to establish a novel mechanism for antigen delivery, targeted specifically to a particular receptor of LCs, Langerin, capable of triggering a T cell response. To this end, the vaccine scaffold will be composed of a T cell stimulating peptide covalently linked to a glycomimetic probe aiming exclusively to Langerin.

This project gathers the use of several techniques derived from both chemistry and biology at the disposal of immunology. First, molecular docking of the binding groove in complex with the antigenic peptide will be crucial to rationally design the vaccine scaffold. Once chosen, the most suitable candidate will be synthetized and analyzed by a combination of different Nuclear Magnetic Resonance (NMR) techniques. Elucidation of the antigen-Langerin affinity using NMR experiments will be critical to choose the most specific antigen to be further employed in biological tests. Antigen uptake will be monitored by flow cytometry and confocal imaging. Whole skin cell suspensions will be then employed to test the specificity of the construct. Finally, antigenic peptides will be tested for T cell activation and proliferation.

The translational outcome of this research will be applied in the design of transdermal patches, which represent an attractive approach to intramuscular vaccination, allowing targeted and pain-free delivery with minimal invasiveness.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/895202
Start date: 01-09-2020
End date: 30-06-2023
Total budget - Public funding: 244 209,77 Euro - 244 209,00 Euro
Cordis data

Original description

The skin is an attractive target in human vaccination harboring a dense network of immune cells. For instance, Lagerhans cells (LCs) are specialized in the identification of antigens derived from pathogens, and their subsequent internalization and presentation to induce a T cell response. The aim of the present proposal is to establish a novel mechanism for antigen delivery, targeted specifically to a particular receptor of LCs, Langerin, capable of triggering a T cell response. To this end, the vaccine scaffold will be composed of a T cell stimulating peptide covalently linked to a glycomimetic probe aiming exclusively to Langerin.

This project gathers the use of several techniques derived from both chemistry and biology at the disposal of immunology. First, molecular docking of the binding groove in complex with the antigenic peptide will be crucial to rationally design the vaccine scaffold. Once chosen, the most suitable candidate will be synthetized and analyzed by a combination of different Nuclear Magnetic Resonance (NMR) techniques. Elucidation of the antigen-Langerin affinity using NMR experiments will be critical to choose the most specific antigen to be further employed in biological tests. Antigen uptake will be monitored by flow cytometry and confocal imaging. Whole skin cell suspensions will be then employed to test the specificity of the construct. Finally, antigenic peptides will be tested for T cell activation and proliferation.

The translational outcome of this research will be applied in the design of transdermal patches, which represent an attractive approach to intramuscular vaccination, allowing targeted and pain-free delivery with minimal invasiveness.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019