QCNGas | Quantum Conductance of Neutral Gas Molecules

Summary
We propose to design a new insert with a sample-holder and investigate quantum aspects of flow (gas) conductance as a function of temperature (T) down to 4K by exploiting de Broglie wavelength for neutral helium (He) atoms through an atomically-flat rectangular graphene nanochannel in a molecular flow regime. By confining the vertical length of the transport channel and tuning the associated de Broglie wavelength (with T), the realization of the quantum limited conductance for He gas flow, similar to the observed quantum signatures of conductance for electrons, seems to be truly within the experimental reach. The behaviour of the wall switches over to more rigid (lowering atomic vibrations) from flexible one at room T which not only enhances the specular reflection but also the phase coherence of the associated de Broglie wavelength. We will investigate the transport properties using layered materials from transition metal dichalcogenides (TMDs) family to induce ballistic transport from the diffusive transport regime at room T via Laser-irradiation and chemical roots which will heal the defects in TMDs at atomic scale. Our investigations will help in search of more materials to have the ballistic transport around room T. Our focus will not only be on the enhanced flow due to quantum effects but also the understanding from fundamental physics point of view as well as exploring in broader perspective. The strategy of the project is to design a setup for low-T, making state-of-the-art devices, investigate the quantum signatures of conductance of nanoscale channels and address various important issues. Completion of the multidisciplinary project will open up a new era where various novel intriguing physics need to be explored further, understanding of quantum gas transport will boost many biomedical and industrial applications, next generation devices using gas sensors and properties of thermal transport exploited to extract heat will be tuned with enhanced performance.
Results, demos, etc. Show all and search (2)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/892595
Start date: 01-08-2020
End date: 31-07-2022
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

We propose to design a new insert with a sample-holder and investigate quantum aspects of flow (gas) conductance as a function of temperature (T) down to 4K by exploiting de Broglie wavelength for neutral helium (He) atoms through an atomically-flat rectangular graphene nanochannel in a molecular flow regime. By confining the vertical length of the transport channel and tuning the associated de Broglie wavelength (with T), the realization of the quantum limited conductance for He gas flow, similar to the observed quantum signatures of conductance for electrons, seems to be truly within the experimental reach. The behaviour of the wall switches over to more rigid (lowering atomic vibrations) from flexible one at room T which not only enhances the specular reflection but also the phase coherence of the associated de Broglie wavelength. We will investigate the transport properties using layered materials from transition metal dichalcogenides (TMDs) family to induce ballistic transport from the diffusive transport regime at room T via Laser-irradiation and chemical roots which will heal the defects in TMDs at atomic scale. Our investigations will help in search of more materials to have the ballistic transport around room T. Our focus will not only be on the enhanced flow due to quantum effects but also the understanding from fundamental physics point of view as well as exploring in broader perspective. The strategy of the project is to design a setup for low-T, making state-of-the-art devices, investigate the quantum signatures of conductance of nanoscale channels and address various important issues. Completion of the multidisciplinary project will open up a new era where various novel intriguing physics need to be explored further, understanding of quantum gas transport will boost many biomedical and industrial applications, next generation devices using gas sensors and properties of thermal transport exploited to extract heat will be tuned with enhanced performance.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)