4f-Mag | On-surface design of lanthanide coordinated networks featuring single atom magnetism

Summary
The capacity of investigate and tailor the materials properties down to nanoscale created new perspectives for the development of functional devices using single atoms or molecules. Concerning magnetism, the stabilization of magnetic remanence in single atoms represents the ultimate limit on the size reduction of storage devices. After recent advances in this field, lanthanides have emerged as promising candidates for atomic magnets. However, the high diffusion of single standing atoms hinder the development of real-world applications. The next step to further advance towards practical devices is the coordination of these atoms in networks preserving their outstanding magnetic properties. This project will explore the high versatility of molecular linkers to coordinate lanthanides atoms. The combination of state-of-art surface science techniques as scanning tunneling microscopy (STM), non-contact atomic force microscopy, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) allows a complete investigation of their fundamental properties. It will be possible to unveil the structural, electronic, chemical and magnetic properties of lanthanides networks prepared on different surfaces. The 4f-Mag project aims to find out suitable combinations of surface and molecular linkers to design regular networks of lanthanides maintaining their functionality as single atom magnets and enhancing their remarkable magnetic properties.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/894924
Start date: 01-01-2021
End date: 31-12-2022
Total budget - Public funding: 160 932,48 Euro - 160 932,00 Euro
Cordis data

Original description

The capacity of investigate and tailor the materials properties down to nanoscale created new perspectives for the development of functional devices using single atoms or molecules. Concerning magnetism, the stabilization of magnetic remanence in single atoms represents the ultimate limit on the size reduction of storage devices. After recent advances in this field, lanthanides have emerged as promising candidates for atomic magnets. However, the high diffusion of single standing atoms hinder the development of real-world applications. The next step to further advance towards practical devices is the coordination of these atoms in networks preserving their outstanding magnetic properties. This project will explore the high versatility of molecular linkers to coordinate lanthanides atoms. The combination of state-of-art surface science techniques as scanning tunneling microscopy (STM), non-contact atomic force microscopy, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) allows a complete investigation of their fundamental properties. It will be possible to unveil the structural, electronic, chemical and magnetic properties of lanthanides networks prepared on different surfaces. The 4f-Mag project aims to find out suitable combinations of surface and molecular linkers to design regular networks of lanthanides maintaining their functionality as single atom magnets and enhancing their remarkable magnetic properties.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019