PocketLight | Compact all-fibre nonlinear resonators as technological platform for a new generation of miniaturised light sources.

Summary
The project aims for the implementation of a novel technological platform based on compact all-fibre resonators (CAFRs). I will exploit silica optical fibres treated via thermal poling to induce a second order nonlinear polarization. Periodically poled silica fibres (PPSFs), equipped with Bragg mirrors on both their facets, will be converted into quadratic nonlinear optical resonators with the target of exploiting the significant enlargement of the nonlinear interaction lengths. A complete study of the experimental conditions necessary to observe up and down conversion of light in the telecom wavelengths range inside those resonators will be realised. The main goal of the project consists in the implementation of an optical parametric oscillator (OPO) by exploiting the CAFR in doubly resonant configuration. This outcome would allow to open the way to a totally revolutionary type of all-fibre, integrated and compact laser/light sources based on nonlinear parametric processes. Another significant goal of the project is the first experimental observation of dissipative structures in these compact all-fibre resonators, with the main target of testing the theoretical predictions present in literature and shed new light onto some still unveiled aspects of dynamics of purely quadratic resonators.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/842676
Start date: 01-09-2020
End date: 31-08-2022
Total budget - Public funding: 166 320,00 Euro - 166 320,00 Euro
Cordis data

Original description

The project aims for the implementation of a novel technological platform based on compact all-fibre resonators (CAFRs). I will exploit silica optical fibres treated via thermal poling to induce a second order nonlinear polarization. Periodically poled silica fibres (PPSFs), equipped with Bragg mirrors on both their facets, will be converted into quadratic nonlinear optical resonators with the target of exploiting the significant enlargement of the nonlinear interaction lengths. A complete study of the experimental conditions necessary to observe up and down conversion of light in the telecom wavelengths range inside those resonators will be realised. The main goal of the project consists in the implementation of an optical parametric oscillator (OPO) by exploiting the CAFR in doubly resonant configuration. This outcome would allow to open the way to a totally revolutionary type of all-fibre, integrated and compact laser/light sources based on nonlinear parametric processes. Another significant goal of the project is the first experimental observation of dissipative structures in these compact all-fibre resonators, with the main target of testing the theoretical predictions present in literature and shed new light onto some still unveiled aspects of dynamics of purely quadratic resonators.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018