Summary
This research proposal aims at implementing novel functionalities for mid-infrared optoelectronic devices and to study novel physical phenomena, enabled by a new class of 3D plasmonic nanostructures that provide access to electromagnetic field confinements.
The specific goal is to fully develop and exploit the potential of nano-antenna-mediated light confinement, funneling energy onto optically active materials with unprecedented efficiency. This will be done by tackling two main broad challenges, one applicative and a second one more exploratory.
On one hand, we will develop devices with high non-linear response, targeting especially second harmonic generation, thanks to the giant field enhancements available. We expect this development to yield record-high conversion efficiencies, paving the way for a more broadband use of IR laser sources.
Inherently effective in absorbing optical energy, this architecture has a great potential also a a tool for complementary device families, such as mid-IR detectors.
On the other hand, we will pioneer the field of single-object cavity-electrodynamics in the mid-infrared, bringing to a further level the energy concentration capabilities of 3D nanostructures and demonstrating strong light-matter coupling between a single nano-antenna and a mid-IR electronic excitation, with an extremely small number of electrons involved. This approach will permit access to currently unexplored regimes of light-matter interaction.
The specific goal is to fully develop and exploit the potential of nano-antenna-mediated light confinement, funneling energy onto optically active materials with unprecedented efficiency. This will be done by tackling two main broad challenges, one applicative and a second one more exploratory.
On one hand, we will develop devices with high non-linear response, targeting especially second harmonic generation, thanks to the giant field enhancements available. We expect this development to yield record-high conversion efficiencies, paving the way for a more broadband use of IR laser sources.
Inherently effective in absorbing optical energy, this architecture has a great potential also a a tool for complementary device families, such as mid-IR detectors.
On the other hand, we will pioneer the field of single-object cavity-electrodynamics in the mid-infrared, bringing to a further level the energy concentration capabilities of 3D nanostructures and demonstrating strong light-matter coupling between a single nano-antenna and a mid-IR electronic excitation, with an extremely small number of electrons involved. This approach will permit access to currently unexplored regimes of light-matter interaction.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/748071 |
Start date: | 01-04-2018 |
End date: | 31-03-2020 |
Total budget - Public funding: | 173 076,00 Euro - 173 076,00 Euro |
Cordis data
Original description
This research proposal aims at implementing novel functionalities for mid-infrared optoelectronic devices and to study novel physical phenomena, enabled by a new class of 3D plasmonic nanostructures that provide access to electromagnetic field confinements.The specific goal is to fully develop and exploit the potential of nano-antenna-mediated light confinement, funneling energy onto optically active materials with unprecedented efficiency. This will be done by tackling two main broad challenges, one applicative and a second one more exploratory.
On one hand, we will develop devices with high non-linear response, targeting especially second harmonic generation, thanks to the giant field enhancements available. We expect this development to yield record-high conversion efficiencies, paving the way for a more broadband use of IR laser sources.
Inherently effective in absorbing optical energy, this architecture has a great potential also a a tool for complementary device families, such as mid-IR detectors.
On the other hand, we will pioneer the field of single-object cavity-electrodynamics in the mid-infrared, bringing to a further level the energy concentration capabilities of 3D nanostructures and demonstrating strong light-matter coupling between a single nano-antenna and a mid-IR electronic excitation, with an extremely small number of electrons involved. This approach will permit access to currently unexplored regimes of light-matter interaction.
Status
CLOSEDCall topic
MSCA-IF-2016Update Date
28-04-2024
Images
No images available.
Geographical location(s)