BSLchlamy | Understanding the essential function of the conserved plant-specific protein phosphatase family BSL

Summary
The protein phosphatase family BSL is highly conserved and universally present in all green plants, from single-celled algae to multicellular land plants. Genetic evidence shows that it plays an essential, albeit completely unknown, role in plant cell biology. The model plant Arabidopsis has four BSL genes, but genetic redundancy coupled with embryonic lethality of mutants has seriously hampered functional studies of the family. In contrast, the green alga Chlamydomonas reinhardtii has only a single BSL homolog and the recent isolation of a temperature-conditional mutation (bsl1-1) in this gene generated a unique tool for rapid switching of BSL activity to study its molecular/celular functions. Detailed analysis of the bsl1-1 mutant identified a role for BSl1 in cell division in Chlamydomonas, specifically in mitotic progression. This phenotype is also consistent with the reduced meristem size observed in BSL knock-down in Arabidopsis and suggests an evolutionarily conserved role for the BSL phosphatase in cell cycle regulation. In the proposed project I will first perform a comprehensive proteomic/biochemical analysis of BSL1 in Chlamydomonas to identify the mechanistic basis for its key role in mitosis. This analysis with include (i) a phosphoproteomic screen to look for substrates and downstream effectors of the BSL1 phosphatase, and (ii) a characterization the BSL1 interactome using a variety of immunoprecipitation-based methods. I will then, during the return phase, translate the findings from Chlamydomonas into Arabidopsis by studying the role of BSL during root meristem development using a combination of microscopic and genetic approaches. Given the conservation of the BSL family throughout the viridiplantae, the results from this study are likely to have a broad impact on the plant biology research community.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/798198
Start date: 01-12-2018
End date: 30-11-2021
Total budget - Public funding: 257 860,80 Euro - 257 860,00 Euro
Cordis data

Original description

The protein phosphatase family BSL is highly conserved and universally present in all green plants, from single-celled algae to multicellular land plants. Genetic evidence shows that it plays an essential, albeit completely unknown, role in plant cell biology. The model plant Arabidopsis has four BSL genes, but genetic redundancy coupled with embryonic lethality of mutants has seriously hampered functional studies of the family. In contrast, the green alga Chlamydomonas reinhardtii has only a single BSL homolog and the recent isolation of a temperature-conditional mutation (bsl1-1) in this gene generated a unique tool for rapid switching of BSL activity to study its molecular/celular functions. Detailed analysis of the bsl1-1 mutant identified a role for BSl1 in cell division in Chlamydomonas, specifically in mitotic progression. This phenotype is also consistent with the reduced meristem size observed in BSL knock-down in Arabidopsis and suggests an evolutionarily conserved role for the BSL phosphatase in cell cycle regulation. In the proposed project I will first perform a comprehensive proteomic/biochemical analysis of BSL1 in Chlamydomonas to identify the mechanistic basis for its key role in mitosis. This analysis with include (i) a phosphoproteomic screen to look for substrates and downstream effectors of the BSL1 phosphatase, and (ii) a characterization the BSL1 interactome using a variety of immunoprecipitation-based methods. I will then, during the return phase, translate the findings from Chlamydomonas into Arabidopsis by studying the role of BSL during root meristem development using a combination of microscopic and genetic approaches. Given the conservation of the BSL family throughout the viridiplantae, the results from this study are likely to have a broad impact on the plant biology research community.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017