Summary
BIOP aims to address one of the most critical environmental issues derived from human activities, plastic wastes. Far from having a suitable alternative to palliate their impact and promote their recyclability, the emerged pandemic alarm associated to the fast coronavirus (COVID-19) spreading worsens detrimentally the scenario. Disposable Personal Protection Equipment (PPE) used by healthcare professionals produces vast quantities of plastic waste, being worthwhile to develop biodegradable PPE for the future, which would allow alternative ways to process this waste. In addition, it is reasonably urgent to propose an efficient alternative to handle the giant amount of non-biodegradable plastics already generated (mainly protective suits, boot covers and single-use gloves). The project focuses mostly on single-use polyethylene (PE) and polypropylene (PP) recycling into lighter value-added molecules (upcycling) that can be used as building blocks to synthetize new biobased polymeric units, in combination with specific biomass-derived platform chemicals such as 2,5-furandicarboxylic acid (FDCA). Hence, going through the plastics to bioplastics concept, the project’s guiding light is the joint valorization of plastic and biomass wastes to finally produce BIOPolymers, approach that add value to both wastes thus paving the way towards a circular economy. With this purpose, the project’s specific challenges concerns 1) PE/PP conversion to lower molecular weight alkenes through the development of specific processes and highly selective catalysts, 2) 5-hydroxymethylfurfural (HMF, biomass platform molecule) transformation to FDCA over the new designed and optimized catalysts and 3) joint conversion of alkenes (derived from plastics) and HMF (one-pot oxidation) thus allowing cost savings and technologies coupling.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101022598 |
Start date: | 01-09-2021 |
End date: | 31-08-2023 |
Total budget - Public funding: | 160 932,48 Euro - 160 932,00 Euro |
Cordis data
Original description
BIOP aims to address one of the most critical environmental issues derived from human activities, plastic wastes. Far from having a suitable alternative to palliate their impact and promote their recyclability, the emerged pandemic alarm associated to the fast coronavirus (COVID-19) spreading worsens detrimentally the scenario. Disposable Personal Protection Equipment (PPE) used by healthcare professionals produces vast quantities of plastic waste, being worthwhile to develop biodegradable PPE for the future, which would allow alternative ways to process this waste. In addition, it is reasonably urgent to propose an efficient alternative to handle the giant amount of non-biodegradable plastics already generated (mainly protective suits, boot covers and single-use gloves). The project focuses mostly on single-use polyethylene (PE) and polypropylene (PP) recycling into lighter value-added molecules (upcycling) that can be used as building blocks to synthetize new biobased polymeric units, in combination with specific biomass-derived platform chemicals such as 2,5-furandicarboxylic acid (FDCA). Hence, going through the plastics to bioplastics concept, the project’s guiding light is the joint valorization of plastic and biomass wastes to finally produce BIOPolymers, approach that add value to both wastes thus paving the way towards a circular economy. With this purpose, the project’s specific challenges concerns 1) PE/PP conversion to lower molecular weight alkenes through the development of specific processes and highly selective catalysts, 2) 5-hydroxymethylfurfural (HMF, biomass platform molecule) transformation to FDCA over the new designed and optimized catalysts and 3) joint conversion of alkenes (derived from plastics) and HMF (one-pot oxidation) thus allowing cost savings and technologies coupling.Status
TERMINATEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping