FISHSCALE | Disentangling Cross-Scale Drivers of Coral Reef Fish Community Structure for Ecosystem-Based Management

Summary
Ecosystem-based management is the dominant paradigm for species-rich, but data-poor coral reef fisheries. But its operationalisation is hindered by a lack of information on the natural organisation of coral reefs as determined by distinct biophysical processes operating across scales in space and time, and therefore how that organisation is affected by local human impacts. Understanding how natural and human drivers interact to determine ecological organisation is critical to the local, context specific and spatially explicit application of ecosystem assessments for management, such as prioritizing management areas based on recovery potential and degree of depletion from an unimpacted baseline state. FISHSCALES not only addresses that knowledge gap, but for the first time proposes a unique natural experiment of unprecedented scale with a novel combination of trait-based approaches and high-resolution oceanographic modelling to reveal the relative influence of interacting biophysical environmental drivers and local human impacts on the functional structure of reef-fish communities across scales (from reefs to regional). Using existing multidisciplinary data spanning 45° of latitude and 65° of longitude across 39 central western Pacific islands, this project will use predictive models to identify the natural biophysical mechanisms that best explain the spatial variation of reef-fish functional diversity across scales. It will then model how local human impacts disrupt those biophysical relationships, and explicitly quantify the relative impact of different human disturbances (from fishing to coastal development). Collectively, the results of FISHSCALES will advance our capacity to predict spatial patterns of functional diversity and structure of reef-fish communities, providing insight into relative ecosystem health and stability, and therefore advance the science underpinning ecosystem-based management of data poor coral reef systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/844213
Start date: 01-03-2021
End date: 25-10-2023
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

Ecosystem-based management is the dominant paradigm for species-rich, but data-poor coral reef fisheries. But its operationalisation is hindered by a lack of information on the natural organisation of coral reefs as determined by distinct biophysical processes operating across scales in space and time, and therefore how that organisation is affected by local human impacts. Understanding how natural and human drivers interact to determine ecological organisation is critical to the local, context specific and spatially explicit application of ecosystem assessments for management, such as prioritizing management areas based on recovery potential and degree of depletion from an unimpacted baseline state. FISHSCALES not only addresses that knowledge gap, but for the first time proposes a unique natural experiment of unprecedented scale with a novel combination of trait-based approaches and high-resolution oceanographic modelling to reveal the relative influence of interacting biophysical environmental drivers and local human impacts on the functional structure of reef-fish communities across scales (from reefs to regional). Using existing multidisciplinary data spanning 45° of latitude and 65° of longitude across 39 central western Pacific islands, this project will use predictive models to identify the natural biophysical mechanisms that best explain the spatial variation of reef-fish functional diversity across scales. It will then model how local human impacts disrupt those biophysical relationships, and explicitly quantify the relative impact of different human disturbances (from fishing to coastal development). Collectively, the results of FISHSCALES will advance our capacity to predict spatial patterns of functional diversity and structure of reef-fish communities, providing insight into relative ecosystem health and stability, and therefore advance the science underpinning ecosystem-based management of data poor coral reef systems.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018