SOFT | Steering organic farming transition

Summary
A key challenge for sustainable intensification of agriculture is to reduce hunger and poverty by producing increasing amounts of food, feed, and bioenergy for a growing world population, but with minimal loss of biodiversity and ecosystem functioning. In intensive conventional farming systems yields are high, but soil biodiversity and ecosystem functioning are often reduced, and soil food webs are simplified. Organic farming provides a more environmentally sustainable alternative, but it typically produces lower yields, particularly in early years after conversion.

In SOFT (Steering Organic Farming Transition), I will test if soil inoculation may be a promising tool to speed up the transition from high-yield conventional to high-yield organic agriculture and can help to overcome ‘soil legacy effects’ due to impoverished soil communities. First, I will use a chronosequence of farmers’ fields throughout The Netherlands that have been converted from conventional to organic farming to study the role that the structure of soil networks may have in soil functioning. Then, I will use soil collected from these sites to test the potential of soil inoculation to aid the transition of soil communities and coupling of soil networks in organic farming systems.

By revealing the potential of whole soil inoculation to regenerate soil networks, and how soil networks relate to functioning in agroecosystems, SOFT will be a ground-breaking advancement compared to current efforts to understand the transition from conventional to organic systems and may serve as a baseline for downstream manipulation studies in which certain soil communities may be engineered as inoculants to steer and speed-up this transition. Taken together, SOFT will contribute to establish new management practices that may help to shorten the transition period from conventional farming to a more organic type of farming that maintains high crop yields while having less negative environmental impacts.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/890874
Start date: 01-09-2020
End date: 31-08-2022
Total budget - Public funding: 187 572,48 Euro - 187 572,00 Euro
Cordis data

Original description

A key challenge for sustainable intensification of agriculture is to reduce hunger and poverty by producing increasing amounts of food, feed, and bioenergy for a growing world population, but with minimal loss of biodiversity and ecosystem functioning. In intensive conventional farming systems yields are high, but soil biodiversity and ecosystem functioning are often reduced, and soil food webs are simplified. Organic farming provides a more environmentally sustainable alternative, but it typically produces lower yields, particularly in early years after conversion.

In SOFT (Steering Organic Farming Transition), I will test if soil inoculation may be a promising tool to speed up the transition from high-yield conventional to high-yield organic agriculture and can help to overcome ‘soil legacy effects’ due to impoverished soil communities. First, I will use a chronosequence of farmers’ fields throughout The Netherlands that have been converted from conventional to organic farming to study the role that the structure of soil networks may have in soil functioning. Then, I will use soil collected from these sites to test the potential of soil inoculation to aid the transition of soil communities and coupling of soil networks in organic farming systems.

By revealing the potential of whole soil inoculation to regenerate soil networks, and how soil networks relate to functioning in agroecosystems, SOFT will be a ground-breaking advancement compared to current efforts to understand the transition from conventional to organic systems and may serve as a baseline for downstream manipulation studies in which certain soil communities may be engineered as inoculants to steer and speed-up this transition. Taken together, SOFT will contribute to establish new management practices that may help to shorten the transition period from conventional farming to a more organic type of farming that maintains high crop yields while having less negative environmental impacts.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019