SMART-UP | Smart Tall Buildings by using Piezoelectricity in Joints

Summary
The SMART-UP project will initiate innovative devices called piezoelectric-dampers (PiDs) to be embedded in modern tall buildings for simultaneous structural elements connection and energy harvesting (EH). PiDs are composite elements (piezoelectric+steel or rubber) located in the connections between buildings’ structural members and engaged by wind-induced oscillations to transform the kinetic energy of the oscillating structure into electricity. The concept of PiD is transformative as this will scale-up currently developed piezoelectric EH (pzEH) techniques at the micro and meso-scales to the truly macro scale. pzEH devices have never been implemented as structural connections in civil buildings for a number of reasons, such as the inadequacy of piezo materials in carrying loads and low frequencies of the vibrations occurring in buildings. These will be comprehensively addressed in SMART-UP by innovative in-parallel coupling schemes between piezo and the load-carrying members such as steel and/or rubber and by allowing the piezo-blocks working in nonlinear regimes arising from buckling or impact. These features will allow their implementation in buildings for powering wireless sensors provided for building automation, which leads to an increment of the building sustainability, and for structural-health monitoring, leading to an increase of the building resilience. Thanks to the introduction of these novel macroscale EH skills, the SMART-UP project makes a step-change in high-rise buildings design and management, by defining a new breed of tall SMART buildings with self-powering, adaptive-in-behavior capabilities. The envisioned buildings not only resist wind loads, but they exploit wind-induced vibrations to reduce their carbon footprint and improve their performances. They will push Europe moving forward to the smart cities era, which is of paramount importance in our modern technological and connected/inclusive society.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/890419
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

The SMART-UP project will initiate innovative devices called piezoelectric-dampers (PiDs) to be embedded in modern tall buildings for simultaneous structural elements connection and energy harvesting (EH). PiDs are composite elements (piezoelectric+steel or rubber) located in the connections between buildings’ structural members and engaged by wind-induced oscillations to transform the kinetic energy of the oscillating structure into electricity. The concept of PiD is transformative as this will scale-up currently developed piezoelectric EH (pzEH) techniques at the micro and meso-scales to the truly macro scale. pzEH devices have never been implemented as structural connections in civil buildings for a number of reasons, such as the inadequacy of piezo materials in carrying loads and low frequencies of the vibrations occurring in buildings. These will be comprehensively addressed in SMART-UP by innovative in-parallel coupling schemes between piezo and the load-carrying members such as steel and/or rubber and by allowing the piezo-blocks working in nonlinear regimes arising from buckling or impact. These features will allow their implementation in buildings for powering wireless sensors provided for building automation, which leads to an increment of the building sustainability, and for structural-health monitoring, leading to an increase of the building resilience. Thanks to the introduction of these novel macroscale EH skills, the SMART-UP project makes a step-change in high-rise buildings design and management, by defining a new breed of tall SMART buildings with self-powering, adaptive-in-behavior capabilities. The envisioned buildings not only resist wind loads, but they exploit wind-induced vibrations to reduce their carbon footprint and improve their performances. They will push Europe moving forward to the smart cities era, which is of paramount importance in our modern technological and connected/inclusive society.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019