TIGER | Tidal marshes: bio-geomorphic self-organization and its implications for resilience to sea level rise and changing sediment supply

Summary
Intertidal landscapes are complex environments located between land and sea, and that are regularly flooded by tides. They provide highly valuable ecosystem services that are threatened by sea level rise and changing sediment supply.

Previous studies showed that the small-scale (order of square meters) interactions between vegetation dynamics, water flow and sediment transport (so-called bio-geomorphic feedbacks) have a great impact on channel network formation and evolution at the landscape-scale (order of square kilometers). This process is called bio-geomorphic self-organization.

My objective is to investigate, for the first time, the impact of plant species traits on bio-geomorphic self-organization of intertidal landscapes. More specifically, I hypothesize that (1) different plant species traits lead to the self-organization of different channel network patterns, and (2) the resulting self-organized landscape structures determine the efficiency to distribute and trap sediments on the intertidal floodplain, and hence the resilience (adaptability) of the landscape to sea level rise and decreasing sediment supply.

By using a combination of remote sensing, field measurements and numerical simulations, I aim at producing new fundamental knowledge on landscape self-organization by bio-geomorphic feedbacks, and its implications for the resilience of intertidal landscapes against environmental changes.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/798222
Start date: 01-09-2019
End date: 31-08-2022
Total budget - Public funding: 258 530,40 Euro - 258 530,00 Euro
Cordis data

Original description

Intertidal landscapes are complex environments located between land and sea, and that are regularly flooded by tides. They provide highly valuable ecosystem services that are threatened by sea level rise and changing sediment supply.

Previous studies showed that the small-scale (order of square meters) interactions between vegetation dynamics, water flow and sediment transport (so-called bio-geomorphic feedbacks) have a great impact on channel network formation and evolution at the landscape-scale (order of square kilometers). This process is called bio-geomorphic self-organization.

My objective is to investigate, for the first time, the impact of plant species traits on bio-geomorphic self-organization of intertidal landscapes. More specifically, I hypothesize that (1) different plant species traits lead to the self-organization of different channel network patterns, and (2) the resulting self-organized landscape structures determine the efficiency to distribute and trap sediments on the intertidal floodplain, and hence the resilience (adaptability) of the landscape to sea level rise and decreasing sediment supply.

By using a combination of remote sensing, field measurements and numerical simulations, I aim at producing new fundamental knowledge on landscape self-organization by bio-geomorphic feedbacks, and its implications for the resilience of intertidal landscapes against environmental changes.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017