GRAFLEX | Graphene curvature, flexibility and reactivity control by means of external fields: theory and computer simulations

Summary
Graphene is a unique material with high potential for applications from high-tech to bio-tech. These capabilities are directly connected to graphene flexibility and electronic properties, as well as to the possibility of controlling them by chemical functionalization. Curvature related reactivity enhancement was shown, and curvature control has found several possible applications from H-storage and energy harvesting to biomed engineering. Thus, the control of graphene curvature is of high relevance.
The aim of GRAFLEX is to investigate the process of curvature control by means of external electric- and electromagnetic fields (EMF), and the consequent curvature-dependent interaction with H, specifically focusing on the physis- to chemi-sorption reversible conversion. EMF in the range of THz will be chosen, since coherent graphene vibrations at those frequencies correspond to the traveling nano-sized ripples producing a local dynamical modulation of the curvature.
To achieve this, we propose to use a state-of-the-art density functional (DF), DF perturbation, and trajectory based time dependent DF theories in combination with ab initio investigation of the kinetics and calculation of flexoelectricity response to the strain gradient in curved graphene.
Conducting the proposed research after carrier break will help the proponent to resume research activities and to train in 1)using the most advanced theoretical methods to investigate properties in graphene/hydrogen system; 2)observe time-resolved information to exploit curvature control process. The complementarity expertise of researchers at NANO@NEST group of multi-scale simulations and proponent’s extensive experience trajectory based chemical dynamics, kinetics and quantum chemistry, together with attractive working conditions, guarantee the feasibility of this challenging project.The experience gained by the proponent within GRAFLEX will change her carrier path to attain an independent position in academia in Europe
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/657070
Start date: 08-09-2015
End date: 07-09-2017
Total budget - Public funding: 180 277,20 Euro - 180 277,00 Euro
Cordis data

Original description

Graphene is a unique material with high potential for applications from high-tech to bio-tech. These capabilities are directly connected to graphene flexibility and electronic properties, as well as to the possibility of controlling them by chemical functionalization. Curvature related reactivity enhancement was shown, and curvature control has found several possible applications from H-storage and energy harvesting to biomed engineering. Thus, the control of graphene curvature is of high relevance.
The aim of GRAFLEX is to investigate the process of curvature control by means of external electric- and electromagnetic fields (EMF), and the consequent curvature-dependent interaction with H, specifically focusing on the physis- to chemi-sorption reversible conversion. EMF in the range of THz will be chosen, since coherent graphene vibrations at those frequencies correspond to the traveling nano-sized ripples producing a local dynamical modulation of the curvature.
To achieve this, we propose to use a state-of-the-art density functional (DF), DF perturbation, and trajectory based time dependent DF theories in combination with ab initio investigation of the kinetics and calculation of flexoelectricity response to the strain gradient in curved graphene.
Conducting the proposed research after carrier break will help the proponent to resume research activities and to train in 1)using the most advanced theoretical methods to investigate properties in graphene/hydrogen system; 2)observe time-resolved information to exploit curvature control process. The complementarity expertise of researchers at NANO@NEST group of multi-scale simulations and proponent’s extensive experience trajectory based chemical dynamics, kinetics and quantum chemistry, together with attractive working conditions, guarantee the feasibility of this challenging project.The experience gained by the proponent within GRAFLEX will change her carrier path to attain an independent position in academia in Europe

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)