Summary
Designing at the nanoscale is a promising and challenging strategy to innovate new building-block materials with improved properties and functionalities. This is a critical point to answer the increased demand of multifunctional materials. Nanocellulose is a functional structured nanomaterial engineered by nature long time before us. It maintains the optimal structural integrity in plant cell wall allowing plants to play their vital role in the ecosystem. Thanks to their high aspect ratio, high surface area and their 150 GPa, nanocellulose could be considered as a revolutionary renewable nano-building block material. Nanocellulose was principally investigated and used as bio-based filler in polymer nanocomposites. One of challenges in the developments of nanocellulose will be to make these naturally nano-structured objects functional with new properties allowing the design and engineering of smarter materials. Our proposal aims to bring nanocellulose to novel frontiers by functionalization of their large surface area and designing new innovative hybrids at the nanoscale. Main objectives of our project are: 1) setting up conditions for nanocellulose surface metallization. 2) Characterizing properties of these innovative nanohybrides and 3) Designing new functional materials based on metalized nanocellulose. The project is an opportunity to the fellow to restart his career in the exciting field of nanocellulose.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/897906 |
Start date: | 01-12-2020 |
End date: | 18-12-2024 |
Total budget - Public funding: | 259 399,17 Euro - 259 398,00 Euro |
Cordis data
Original description
Designing at the nanoscale is a promising and challenging strategy to innovate new building-block materials with improved properties and functionalities. This is a critical point to answer the increased demand of multifunctional materials. Nanocellulose is a functional structured nanomaterial engineered by nature long time before us. It maintains the optimal structural integrity in plant cell wall allowing plants to play their vital role in the ecosystem. Thanks to their high aspect ratio, high surface area and their 150 GPa, nanocellulose could be considered as a revolutionary renewable nano-building block material. Nanocellulose was principally investigated and used as bio-based filler in polymer nanocomposites. One of challenges in the developments of nanocellulose will be to make these naturally nano-structured objects functional with new properties allowing the design and engineering of smarter materials. Our proposal aims to bring nanocellulose to novel frontiers by functionalization of their large surface area and designing new innovative hybrids at the nanoscale. Main objectives of our project are: 1) setting up conditions for nanocellulose surface metallization. 2) Characterizing properties of these innovative nanohybrides and 3) Designing new functional materials based on metalized nanocellulose. The project is an opportunity to the fellow to restart his career in the exciting field of nanocellulose.Status
SIGNEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)