PARNANT | Pathogenetic pathways in age-related neurodegenerations as novel therapeutic targets for Parkinson’s disease

Summary
Parkinson’s disease (PD) is the second most common neurodegenerative disorder (after Alzheimer's) associated with oxidative stress and aging, and affects an estimated 1% of people worldwide over 60 years of age. The pathogenetic triggers of neurodegenerations are largely unknown. Current therapeutic interventions only partially alleviate symptoms and do not restore normal neuronal function or prevent progressive neurodegenerations. Identifying novel molecular targets and searching for therapeutic agents that block neurodegeneration and promote neuronal restoration is a key challenge in the field. I and the Host have together identified 51 candidate genetic loci associated with age-related neurodegenerations in PD model and PD patients, respectively. These candidate genes are evolutionarily conserved in both vertebrate and invertebrate animals. I hypothesize that some of these genes, via an evolutionarily conserved signal transduction pathway, alleviate the oxidative stress in the dopaminergic neurons and protect them against degeneration. This project combines my (C. elegans genetics) and Host (cell-based PD models) expertise to identify new genetic pathways that mediate protection against neurodegenerations during oxidative stress and aging. I expect that achieved goals of the proposal will be important discovery that should lead to novel therapeutic targeting for Parkinson’s disease, and other neurodegenerative proteinopathies. My long-term goal is to become an independent scientist and establish lab to find novel therapeutic targets and strategies for the diseases associated with oxidative stress, including PD. Gained research experience together with improving my teaching, mentoring and management skills during this fellowship will help me to achieve my goals and transition myself into independence.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/844497
Start date: 02-09-2019
End date: 01-09-2021
Total budget - Public funding: 183 473,28 Euro - 183 473,00 Euro
Cordis data

Original description

Parkinson’s disease (PD) is the second most common neurodegenerative disorder (after Alzheimer's) associated with oxidative stress and aging, and affects an estimated 1% of people worldwide over 60 years of age. The pathogenetic triggers of neurodegenerations are largely unknown. Current therapeutic interventions only partially alleviate symptoms and do not restore normal neuronal function or prevent progressive neurodegenerations. Identifying novel molecular targets and searching for therapeutic agents that block neurodegeneration and promote neuronal restoration is a key challenge in the field. I and the Host have together identified 51 candidate genetic loci associated with age-related neurodegenerations in PD model and PD patients, respectively. These candidate genes are evolutionarily conserved in both vertebrate and invertebrate animals. I hypothesize that some of these genes, via an evolutionarily conserved signal transduction pathway, alleviate the oxidative stress in the dopaminergic neurons and protect them against degeneration. This project combines my (C. elegans genetics) and Host (cell-based PD models) expertise to identify new genetic pathways that mediate protection against neurodegenerations during oxidative stress and aging. I expect that achieved goals of the proposal will be important discovery that should lead to novel therapeutic targeting for Parkinson’s disease, and other neurodegenerative proteinopathies. My long-term goal is to become an independent scientist and establish lab to find novel therapeutic targets and strategies for the diseases associated with oxidative stress, including PD. Gained research experience together with improving my teaching, mentoring and management skills during this fellowship will help me to achieve my goals and transition myself into independence.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018