GWFP | Geometric study of Wasserstein spaces and free probability

Summary
The proposed research is divided into two main work packages. The first one is the study of spaces of measures equipped with the optimal transport distance (Wasserstein distance) with a special emphasis on the structure of isometries (surjective distance-preserving maps) and isometric embeddings (not necessarily surjective transformations that preserve the distance) of these spaces. The second work package is devoted to the investigation of measures from the viewpoint of free probability theory. This work package covers three subtopics: the qualitative behaviour of the free convolution, new random matrix ensembles arising from tensor networks, and the study of free Wasserstein spaces.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/846294
Start date: 01-10-2019
End date: 30-09-2021
Total budget - Public funding: 186 167,04 Euro - 186 167,00 Euro
Cordis data

Original description

The proposed research is divided into two main work packages. The first one is the study of spaces of measures equipped with the optimal transport distance (Wasserstein distance) with a special emphasis on the structure of isometries (surjective distance-preserving maps) and isometric embeddings (not necessarily surjective transformations that preserve the distance) of these spaces. The second work package is devoted to the investigation of measures from the viewpoint of free probability theory. This work package covers three subtopics: the qualitative behaviour of the free convolution, new random matrix ensembles arising from tensor networks, and the study of free Wasserstein spaces.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018