SAL-MOVE | Migration timing genotype as a predictor of salmon vulnerability to environmental change

Summary
As the global environment changes, species are increasingly suffering mismatches between their seasonally timed movements and the conditions that they encounter. The long-distance migrations of Atlantic salmon (Salmo salar) from their natal rivers to their marine feeding grounds and back again are a charismatic example of such seasonally timed movements. The timings of both the outward and return migrations are heritable, and vary substantially within and among populations, likely reflecting selection to enter the marine environment when survival conditions are optimal and return to the freshwater when breeding success is maximized. Importantly, salmon cannot observe the conditions at their destination and must rely on proximate cues, in particular photoperiod, to schedule their migration. Globally, salmon migrations have advanced over recent decades, suggesting that phenological mismatch could be a factor in ongoing Atlantic salmon declines.

How and whether a species can adjust its migratory timing to match new conditions depends on the underlying genetic architecture of this timing. SAL-MOVE will establish a global collaborative network of salmon researchers, collate existing datasets, and apply state-of-the-art genomic analysis to characterize the environmental correlates and genetic basis of Atlantic salmon migration timing throughout its range. This information will be combined with future climate scenarios in an eco-evolutionary modelling framework to predict how Atlantic salmon populations will be impacted by anthropogenic change via their migration phenotypes and genotypes. Results from SAL-MOVE will be used to directly guide management actions intended to increase the security of wild Atlantic salmon.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101033050
Start date: 01-04-2022
End date: 31-03-2025
Total budget - Public funding: 258 498,24 Euro - 258 498,00 Euro
Cordis data

Original description

As the global environment changes, species are increasingly suffering mismatches between their seasonally timed movements and the conditions that they encounter. The long-distance migrations of Atlantic salmon (Salmo salar) from their natal rivers to their marine feeding grounds and back again are a charismatic example of such seasonally timed movements. The timings of both the outward and return migrations are heritable, and vary substantially within and among populations, likely reflecting selection to enter the marine environment when survival conditions are optimal and return to the freshwater when breeding success is maximized. Importantly, salmon cannot observe the conditions at their destination and must rely on proximate cues, in particular photoperiod, to schedule their migration. Globally, salmon migrations have advanced over recent decades, suggesting that phenological mismatch could be a factor in ongoing Atlantic salmon declines.

How and whether a species can adjust its migratory timing to match new conditions depends on the underlying genetic architecture of this timing. SAL-MOVE will establish a global collaborative network of salmon researchers, collate existing datasets, and apply state-of-the-art genomic analysis to characterize the environmental correlates and genetic basis of Atlantic salmon migration timing throughout its range. This information will be combined with future climate scenarios in an eco-evolutionary modelling framework to predict how Atlantic salmon populations will be impacted by anthropogenic change via their migration phenotypes and genotypes. Results from SAL-MOVE will be used to directly guide management actions intended to increase the security of wild Atlantic salmon.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships