FRC BioEnergetics | Functional dissection of metabolic checkpoints in lymph node fibroblastic reticular cells

Summary
Induction and regulation of optimal immune responses depends on the proper functioning of fibroblastic reticular cells (FRCs) of secondary lymphoid organs (SLOs). Energy balance maintained through the choice of ideal metabolic pathways critically influences the performance of immune cells. Currently, the bioenergetic demands of FRCs and how they impinge on their function remain elusive. The overarching goal of this project is to decipher the bioenergetic needs of FRCs in homeostasis and during inflammation and to uncover the critical immunological signals involved in the metabolic shift of FRCs that underpin immune activation. Combination of state-of-the-art models for in vivo FRC targeting, novel methods from quantitative systems biology and molecular perturbation analysis will be utilized to reveal the metabolic landscape supporting optimal FRC function and the induction of immune responses. Specifically, “FRC BioEnergetics” will determine: The bioenergetic profile of homeostatic vs. inflammatory FRCs and identify the metabolic switching necessary to support the transition to immune-activated state of FRCs (Aim 1); Identify the immunological signals that trigger metabolic switching necessary to support FRC activation (Aim 2) and Determine to what extent metabolic regulation of FRC function impacts on global immune responsiveness (Aim 3). The focus of the multidisciplinary research program on metabolic regulation of FRC function as central means for the control of immune responsiveness will reveal novel principles underlying immune homeostasis and immunity. “FRC BioEnergetics” will expand our knowledge of the intricate metabolic regulation of immune cell function, with the final goal to provide novel options to modulate immune responses by targeting FRC metabolism and deliver better immunotherapeutic strategies against infection, cancer and autoimmune disorders.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/844732
Start date: 01-06-2020
End date: 31-05-2022
Total budget - Public funding: 162 806,40 Euro - 162 806,00 Euro
Cordis data

Original description

Induction and regulation of optimal immune responses depends on the proper functioning of fibroblastic reticular cells (FRCs) of secondary lymphoid organs (SLOs). Energy balance maintained through the choice of ideal metabolic pathways critically influences the performance of immune cells. Currently, the bioenergetic demands of FRCs and how they impinge on their function remain elusive. The overarching goal of this project is to decipher the bioenergetic needs of FRCs in homeostasis and during inflammation and to uncover the critical immunological signals involved in the metabolic shift of FRCs that underpin immune activation. Combination of state-of-the-art models for in vivo FRC targeting, novel methods from quantitative systems biology and molecular perturbation analysis will be utilized to reveal the metabolic landscape supporting optimal FRC function and the induction of immune responses. Specifically, “FRC BioEnergetics” will determine: The bioenergetic profile of homeostatic vs. inflammatory FRCs and identify the metabolic switching necessary to support the transition to immune-activated state of FRCs (Aim 1); Identify the immunological signals that trigger metabolic switching necessary to support FRC activation (Aim 2) and Determine to what extent metabolic regulation of FRC function impacts on global immune responsiveness (Aim 3). The focus of the multidisciplinary research program on metabolic regulation of FRC function as central means for the control of immune responsiveness will reveal novel principles underlying immune homeostasis and immunity. “FRC BioEnergetics” will expand our knowledge of the intricate metabolic regulation of immune cell function, with the final goal to provide novel options to modulate immune responses by targeting FRC metabolism and deliver better immunotherapeutic strategies against infection, cancer and autoimmune disorders.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018