SusCat | Stereoselective CO2 Capture through Sustainable Organocatalytic Alkene Activation

Summary
SusCat aims to develop asymmetric organocatalytic reactions using cheap, commonplace starting materials (alkenes and CO2) to achieve environmentally-friendly manufacturing of medicinally important building blocks, which are abundant in drug molecules and agrochemicals. An atom economical manufacturing of these value-added products will be realized avoiding the use of intrinsically toxic reagents and production of waste chemical byproducts. We will adopt an interdisciplinary approach by combining experiment, theory and cheminformatics. SusCat promises to open new vistas in organocatalytic unbiased olefin activation, a longstanding quest in organic synthesis. This approach will also pave the way for the use of CO2 as a C1 synthon under mild conditions, which will not only help to reduce the carbon footprint but also add to the understanding of how nature uses CO2 as a source of energy. Moreover, the state-of-the-art computational analysis and physical organic experiments will be performed to gain insights on the molecular level. A detailed cheminformatics-based approach will be adopted to build a predictive statistical model and understand the structure activity relationship between the catalyst and the substrate. SusCat will equip the Experienced Researcher with new knowledge and skills in theory and experimentation, thus broadening his scientific background and enhancing his prospects as an independent researcher. At the same time, the Action and the Host group will benefit from the advanced knowledge in chemical catalysis acquired by the researcher during his stay. Overall, this study will create a bridge among organic synthesis, computational modelling and physical organic studies, providing not only a unique alternative to environmentally deleterious metal-mediated synthesis, but also contributing towards achieving the Europe 2020 strategy priorities: sustainable growth and resource efficiency.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/897130
Start date: 01-04-2020
End date: 31-03-2022
Total budget - Public funding: 162 806,40 Euro - 162 806,00 Euro
Cordis data

Original description

SusCat aims to develop asymmetric organocatalytic reactions using cheap, commonplace starting materials (alkenes and CO2) to achieve environmentally-friendly manufacturing of medicinally important building blocks, which are abundant in drug molecules and agrochemicals. An atom economical manufacturing of these value-added products will be realized avoiding the use of intrinsically toxic reagents and production of waste chemical byproducts. We will adopt an interdisciplinary approach by combining experiment, theory and cheminformatics. SusCat promises to open new vistas in organocatalytic unbiased olefin activation, a longstanding quest in organic synthesis. This approach will also pave the way for the use of CO2 as a C1 synthon under mild conditions, which will not only help to reduce the carbon footprint but also add to the understanding of how nature uses CO2 as a source of energy. Moreover, the state-of-the-art computational analysis and physical organic experiments will be performed to gain insights on the molecular level. A detailed cheminformatics-based approach will be adopted to build a predictive statistical model and understand the structure activity relationship between the catalyst and the substrate. SusCat will equip the Experienced Researcher with new knowledge and skills in theory and experimentation, thus broadening his scientific background and enhancing his prospects as an independent researcher. At the same time, the Action and the Host group will benefit from the advanced knowledge in chemical catalysis acquired by the researcher during his stay. Overall, this study will create a bridge among organic synthesis, computational modelling and physical organic studies, providing not only a unique alternative to environmentally deleterious metal-mediated synthesis, but also contributing towards achieving the Europe 2020 strategy priorities: sustainable growth and resource efficiency.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019