3DPRINT-VASCU-CHIP | 3D Printed Vascular Model-on-Chip Platform with Automated Customization

Summary
Cardiovascular diseases cause over 14 million deaths worldwide each year, particularly in the form of heart attacks and strokes. Such diseases have been commonly studied by employing in vitro and in vivo models which are not able to completely recapitulate the human physiology/disease, therefore undermining the search for efficient new treatments. High resolution 3D printing has the potential to revolutionize the study of cardiovascular diseases by means of organ-on-chip approaches. Unlike conventional 2D wafer-based microfabrication techniques, 3D printing can generate truly 3D, organically shaped, highly accurate microfluidic replicas of blood vessels. These replicas can further be lined with cells and perfused with blood, disease-like events can be studied in detail, and therapeutic molecules can be tested. In this project, the potential of such methodology will be explored by developing a software tool that enables automated application-specific customization of the on-chip study platform and by utilizing more complex and biologically relevant materials in the devices' fabrication. The added value of the devices will be further testified by comparison with well-established protocols/methods in the study of angiogenesis, namely in high throughput screening settings. Finally, the commercial viability of such approach will also be assessed, and translation to market will be pursued.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/798014
Start date: 01-05-2018
End date: 30-04-2020
Total budget - Public funding: 148 635,60 Euro - 148 635,00 Euro
Cordis data

Original description

Cardiovascular diseases cause over 14 million deaths worldwide each year, particularly in the form of heart attacks and strokes. Such diseases have been commonly studied by employing in vitro and in vivo models which are not able to completely recapitulate the human physiology/disease, therefore undermining the search for efficient new treatments. High resolution 3D printing has the potential to revolutionize the study of cardiovascular diseases by means of organ-on-chip approaches. Unlike conventional 2D wafer-based microfabrication techniques, 3D printing can generate truly 3D, organically shaped, highly accurate microfluidic replicas of blood vessels. These replicas can further be lined with cells and perfused with blood, disease-like events can be studied in detail, and therapeutic molecules can be tested. In this project, the potential of such methodology will be explored by developing a software tool that enables automated application-specific customization of the on-chip study platform and by utilizing more complex and biologically relevant materials in the devices' fabrication. The added value of the devices will be further testified by comparison with well-established protocols/methods in the study of angiogenesis, namely in high throughput screening settings. Finally, the commercial viability of such approach will also be assessed, and translation to market will be pursued.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017