NANOSPLIT | Nanofluid Spectral Beam Splitter Assisted Hybrid CPV/T System

Summary
The deficient utilisation of the full solar spectrum for power generation in conventional hybrid CPV/T technologies leads to a detrimental decrease in PV cell efficiency due to elevated temperatures. The aim of this research is to break entirely from conventional design principles and to develop a novel nanofluid spectral splitter (NSS)-assisted hybrid CPV/T collector which will benefit from a step-change improvement in electrical efficiency via the optical filtering of spectral wavelengths that are inefficiently utilised by the PV cells in the form of heat, enabling the delivery of high-temperature heat and enhancing the life of the PV cells. Plasmonic nanofluid acting as the NSS will be used for visible light harvesting, while the high grade heat generated by the splitting process will be stored in a thermal storage and utilised directly in domestic or commercial applications. The NANOSPLIT project is highly interdisciplinary and covers process engineering, chemistry (nanomaterials synthesis), physics (PV), energy engineering (solar collector design, development), mechanical and chemical engineering (thermal storage and power generation). The host supervisor, Prof. Christos Markides, has world-leading experience in waste-heat recovery and utilisation and solar energy technologies. He will provide expert training and support for design and development of the innovative hybrid PV/T concept, while, Dr. Sandesh Chougule, a leading Indian researcher, will bring his knowledge on the novel application of nanofluids in solar spectral beam splitting to the host(s). In addition, design of concentrating collectors will support NANOSPLIT through a planned secondment. The high-quality two-way transfer of knowledge required for this project will ensure that research goals are achieved, whilst also presenting a great opportunity to accelerate the academic career of the researcher. Completion of NANOSPLIT will lead to significant economic and societal impacts on the EU and world.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101028904
Start date: 01-11-2021
End date: 31-10-2023
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

The deficient utilisation of the full solar spectrum for power generation in conventional hybrid CPV/T technologies leads to a detrimental decrease in PV cell efficiency due to elevated temperatures. The aim of this research is to break entirely from conventional design principles and to develop a novel nanofluid spectral splitter (NSS)-assisted hybrid CPV/T collector which will benefit from a step-change improvement in electrical efficiency via the optical filtering of spectral wavelengths that are inefficiently utilised by the PV cells in the form of heat, enabling the delivery of high-temperature heat and enhancing the life of the PV cells. Plasmonic nanofluid acting as the NSS will be used for visible light harvesting, while the high grade heat generated by the splitting process will be stored in a thermal storage and utilised directly in domestic or commercial applications. The NANOSPLIT project is highly interdisciplinary and covers process engineering, chemistry (nanomaterials synthesis), physics (PV), energy engineering (solar collector design, development), mechanical and chemical engineering (thermal storage and power generation). The host supervisor, Prof. Christos Markides, has world-leading experience in waste-heat recovery and utilisation and solar energy technologies. He will provide expert training and support for design and development of the innovative hybrid PV/T concept, while, Dr. Sandesh Chougule, a leading Indian researcher, will bring his knowledge on the novel application of nanofluids in solar spectral beam splitting to the host(s). In addition, design of concentrating collectors will support NANOSPLIT through a planned secondment. The high-quality two-way transfer of knowledge required for this project will ensure that research goals are achieved, whilst also presenting a great opportunity to accelerate the academic career of the researcher. Completion of NANOSPLIT will lead to significant economic and societal impacts on the EU and world.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships