DELTA | Direct Experimental probe of the Lorenz invariance violation in the Top-quark physics at the ATLAS experiment.

Summary
The Standard Model (SM) is a theory which accurately describes the elementary constituents of matter and interactions between them at the energy scales we have been able to probe in experiments up to the present day. However, since in the Nature we observe physics phenomena beyond the SM, it is expected that the SM is a low-energy effective approximation of a theory that describes the physics of particles and their interactions in a broader way. Lorentz Invariance is a fundamental symmetry of the SM, but it is not expected to be conserved necessarily at the high energy scale of quantum gravity where space-time could undergo violent fluctuations. The violation of the Lorenz invariance (LIV), which is predicted by some extensions of the SM theory, would manifests itself at energies accessible by the experiments nowadays.
I propose to preform the first search for the possible LIV in the top quark interactions at the ATLAS experiment at CERN’s Large Hadron Collider (LHC) that will pioneer the use of innovative approaches to analyse collision data taking into account detector orientation in the space-time continuum. The project will comprise phenomenological study to identify observables most sensitive to LIV, development of the novel framework for analysing data as a function of the sidereal time, study of the time-dependence of the ATLAS detector performance and state-of-the-art collision data analysis. My long-standing experience with measurements targeting the final states with top quarks and Higgs boson decays, provide me with unique expertise to perform this search and unlock the hidden potential of the LHC collision data. In addition, I plan to use my expertise in the jet flavour tagging and further improve the performance of the b-jet tagging algorithms for the upcoming LHC Run-3 data-taking period. My knowledge, skills and technical expertise gained over the course of last several years, supported by the extensive expertise in the key areas of IPB and CERN teams
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101033496
Start date: 01-07-2021
End date: 30-09-2023
Total budget - Public funding: 140 021,76 Euro - 140 021,00 Euro
Cordis data

Original description

The Standard Model (SM) is a theory which accurately describes the elementary constituents of matter and interactions between them at the energy scales we have been able to probe in experiments up to the present day. However, since in the Nature we observe physics phenomena beyond the SM, it is expected that the SM is a low-energy effective approximation of a theory that describes the physics of particles and their interactions in a broader way. Lorentz Invariance is a fundamental symmetry of the SM, but it is not expected to be conserved necessarily at the high energy scale of quantum gravity where space-time could undergo violent fluctuations. The violation of the Lorenz invariance (LIV), which is predicted by some extensions of the SM theory, would manifests itself at energies accessible by the experiments nowadays.
I propose to preform the first search for the possible LIV in the top quark interactions at the ATLAS experiment at CERN’s Large Hadron Collider (LHC) that will pioneer the use of innovative approaches to analyse collision data taking into account detector orientation in the space-time continuum. The project will comprise phenomenological study to identify observables most sensitive to LIV, development of the novel framework for analysing data as a function of the sidereal time, study of the time-dependence of the ATLAS detector performance and state-of-the-art collision data analysis. My long-standing experience with measurements targeting the final states with top quarks and Higgs boson decays, provide me with unique expertise to perform this search and unlock the hidden potential of the LHC collision data. In addition, I plan to use my expertise in the jet flavour tagging and further improve the performance of the b-jet tagging algorithms for the upcoming LHC Run-3 data-taking period. My knowledge, skills and technical expertise gained over the course of last several years, supported by the extensive expertise in the key areas of IPB and CERN teams

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships