InRegen | Fine-tuning the inflammatory response following cardiac injury to promote cardiac regeneration

Summary
The pronounced inability of adult human/mammalian heart to regenerate causes millions of deaths following cardiac insult, particularly in the longer term. The extent and persistence of associated inflammation has been generally linked with adverse cardiac outcomes, including fibrosis, hypertrophy, and dysfunction. However, characteristics of the inflammatory response e.g. the maturity of resident macrophages and/or the activation status of infiltrating cells may differentially influence cardiac fibroblasts and, most importantly, cardiomyocytes, thus affecting cardiac regeneration, hypertrophy, fibrosis and dysfunction. Unraveling crucial parameters of such interactions in appropriate biological systems should confer decisive intervention potential in a serious health problem. In the past years we have studied in detail cellular and molecular players regulating pivotal events initiating or sustaining the progress to heart failure (HF) in mice and zebrafish and we propose here to combine the systems to globally study these interactions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101031796
Start date: 15-03-2021
End date: 14-03-2023
Total budget - Public funding: 153 085,44 Euro - 153 085,00 Euro
Cordis data

Original description

The pronounced inability of adult human/mammalian heart to regenerate causes millions of deaths following cardiac insult, particularly in the longer term. The extent and persistence of associated inflammation has been generally linked with adverse cardiac outcomes, including fibrosis, hypertrophy, and dysfunction. However, characteristics of the inflammatory response e.g. the maturity of resident macrophages and/or the activation status of infiltrating cells may differentially influence cardiac fibroblasts and, most importantly, cardiomyocytes, thus affecting cardiac regeneration, hypertrophy, fibrosis and dysfunction. Unraveling crucial parameters of such interactions in appropriate biological systems should confer decisive intervention potential in a serious health problem. In the past years we have studied in detail cellular and molecular players regulating pivotal events initiating or sustaining the progress to heart failure (HF) in mice and zebrafish and we propose here to combine the systems to globally study these interactions.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships