ASiD | Axion Search in DarkSide-20k

Summary
Dark matter constitutes approximately 85 % of our Milky Way galaxy. Relic axions and Weakly interacting massive particles (WIMPs) are two of the most promising candidates for dark matter. Axions were proposed to explain the invariance of the two discrete symmetries P and CP, in strong interactions while the rest of the Standard Model (SM) violates them. While relic axions were produced in abundance during the big bang, axion-like-particles are produced in stars due to Compton-like and bremsstrahlung processes. The axion-like-particles produced in Sun are called the solar axions. Because the solar axions are relativistic, they are a candidate for hot dark matter. This project aims at detecting the solar axion interaction and the diurnal and annual modulation of light dark matter particles in the silicon of the state-of-the-art Silicon Photomultipliers (SiPM) sensor array of the DarkSide-20k experiment. The proposed search would be first of its kind. This project involves training in new and advanced research techniques which will pave the way towards a successful career in astroparticle physics for the applicant and the transfer of knowledge to the host institution.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101031397
Start date: 01-01-2022
End date: 31-12-2023
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

Dark matter constitutes approximately 85 % of our Milky Way galaxy. Relic axions and Weakly interacting massive particles (WIMPs) are two of the most promising candidates for dark matter. Axions were proposed to explain the invariance of the two discrete symmetries P and CP, in strong interactions while the rest of the Standard Model (SM) violates them. While relic axions were produced in abundance during the big bang, axion-like-particles are produced in stars due to Compton-like and bremsstrahlung processes. The axion-like-particles produced in Sun are called the solar axions. Because the solar axions are relativistic, they are a candidate for hot dark matter. This project aims at detecting the solar axion interaction and the diurnal and annual modulation of light dark matter particles in the silicon of the state-of-the-art Silicon Photomultipliers (SiPM) sensor array of the DarkSide-20k experiment. The proposed search would be first of its kind. This project involves training in new and advanced research techniques which will pave the way towards a successful career in astroparticle physics for the applicant and the transfer of knowledge to the host institution.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships