SMILIES | Two-dimensional Transition Metal Dichalcogenides as Charge Transporting Layers for High Efficient Perovskite Solar Cells

Summary
SMILIES is based on perovskite solar cells (PSC) employing Transition Metal Dichalcogenides (TMDs) in a cutting-edge approach for the fabrication of stable and efficient PSCs. The current bottleneck are poor vertical conductivity in 2-dimenisional TMD and stability of PSCs. The research strategy to overcome such challenges are as follows: i) design, develop and optimization of quasi-3D TMD:small molecules with improved vertical conductivity and apply them as hole transporting materials in p-i-n PSCs; ii) fabricate high efficiency and stable PSCs (PCE >24%) with optimized TMDs quantum dots as top transporting materials. The project will overcome barrier to promote TMDs application in other opto-electrical devices, and will advances the commercialization of PSCs and TMDs. The expected results of the project will contribute to European excellence and competiveness in renewable energy field.
The transferable aim of SMILIES is to provide training to the fellow in the emerging field of photovoltaics and corresponding materials, where host has a critical knowledge and expertise. The training program includes knowledge acquisition and characterization of organic materials, developing quasi-3D nanocomposites and TMD quantum dots and in-stu measurement for charge dynamics of PSCs. During his short research career, the applicant has gained expertise in the field of photovoltaics and inorganic materials. To further boost his career, the applicant needs to broaden his knowledge in the field of photovoltaics, and within framework of project he will acquire expertise in the field of organic and nanocomposite materials. This will complement the existing expertise in inorganic materials. Further, the success of the project will provide more opportunity to gain supervision and teaching experience, project and intellectual property management research funding and proposal writing skills, which are critical for the applicant to secure a long-term international career and collaboration.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/896211
Start date: 01-06-2020
End date: 31-05-2022
Total budget - Public funding: 172 932,48 Euro - 172 932,00 Euro
Cordis data

Original description

SMILIES is based on perovskite solar cells (PSC) employing Transition Metal Dichalcogenides (TMDs) in a cutting-edge approach for the fabrication of stable and efficient PSCs. The current bottleneck are poor vertical conductivity in 2-dimenisional TMD and stability of PSCs. The research strategy to overcome such challenges are as follows: i) design, develop and optimization of quasi-3D TMD:small molecules with improved vertical conductivity and apply them as hole transporting materials in p-i-n PSCs; ii) fabricate high efficiency and stable PSCs (PCE >24%) with optimized TMDs quantum dots as top transporting materials. The project will overcome barrier to promote TMDs application in other opto-electrical devices, and will advances the commercialization of PSCs and TMDs. The expected results of the project will contribute to European excellence and competiveness in renewable energy field.
The transferable aim of SMILIES is to provide training to the fellow in the emerging field of photovoltaics and corresponding materials, where host has a critical knowledge and expertise. The training program includes knowledge acquisition and characterization of organic materials, developing quasi-3D nanocomposites and TMD quantum dots and in-stu measurement for charge dynamics of PSCs. During his short research career, the applicant has gained expertise in the field of photovoltaics and inorganic materials. To further boost his career, the applicant needs to broaden his knowledge in the field of photovoltaics, and within framework of project he will acquire expertise in the field of organic and nanocomposite materials. This will complement the existing expertise in inorganic materials. Further, the success of the project will provide more opportunity to gain supervision and teaching experience, project and intellectual property management research funding and proposal writing skills, which are critical for the applicant to secure a long-term international career and collaboration.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019