HYGAS | Predictive tools for turbulent combustion of hydrogen-enriched natural gas through carefully reduced kinetic mechanisms

Summary
The growing crisis of serious environmental degradation necessitates the demand for alternative fuels. Hydrogen-enhanced natural gas is playing an increasingly important role to decarbonize the gas going into people’s homes and for power generation. However, there are substantial knowledge gap concerning the turbulent combustion and explosion characteristics of hydrogen-enhanced natural gas, which makes great challenge in associated combustion systems and safety issues. Such knowledge gaps hinder the progress of wide deployment of Hydrogen-enhanced natural gas to achieve the ambitious target for decarbonization.
The proposed research aims to bridge these knowledge gaps by gaining insight about the turbulent combustion characteristics of hydrogen-enhanced natural gas through numerical studies aided by existing experimental data. The Fellow will develop a robust modelling approach for the combustion of such blended fuel with reduced chemical reaction mechanism to facilitate effective coupling with computational fluid dynamics (CFD) models. The reduced mechanism will be designed to firstly reproduce the fundamental combustion characteristics concerning ignition and laminar flame speed for validation before being implemented in open source CFD code OpenFOAM. The following specific research objectives are set towards achieving this goal:
⁃ Improve detailed kinetic mechanism HP-Mech for hydrogen-enriched natural gas and validate the mechanism with available laminar flame speed, ignition delay time, and species profile, etc. in the literature;
⁃ Develop reduced kinetic mechanism using the PFA method and perform validations through comparison with the predictions of the detailed mechanism;
⁃ Conduct CFD simulations using the newly developed reduced mechanism for small scale scenarios where test data are available for validation;
⁃ Extend CFD simulations to medium and large-scale scenarios for validation as well as applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/891173
Start date: 17-01-2022
End date: 19-06-2024
Total budget - Public funding: 224 933,77 Euro - 224 933,00 Euro
Cordis data

Original description

The growing crisis of serious environmental degradation necessitates the demand for alternative fuels. Hydrogen-enhanced natural gas is playing an increasingly important role to decarbonize the gas going into people’s homes and for power generation. However, there are substantial knowledge gap concerning the turbulent combustion and explosion characteristics of hydrogen-enhanced natural gas, which makes great challenge in associated combustion systems and safety issues. Such knowledge gaps hinder the progress of wide deployment of Hydrogen-enhanced natural gas to achieve the ambitious target for decarbonization.
The proposed research aims to bridge these knowledge gaps by gaining insight about the turbulent combustion characteristics of hydrogen-enhanced natural gas through numerical studies aided by existing experimental data. The Fellow will develop a robust modelling approach for the combustion of such blended fuel with reduced chemical reaction mechanism to facilitate effective coupling with computational fluid dynamics (CFD) models. The reduced mechanism will be designed to firstly reproduce the fundamental combustion characteristics concerning ignition and laminar flame speed for validation before being implemented in open source CFD code OpenFOAM. The following specific research objectives are set towards achieving this goal:
⁃ Improve detailed kinetic mechanism HP-Mech for hydrogen-enriched natural gas and validate the mechanism with available laminar flame speed, ignition delay time, and species profile, etc. in the literature;
⁃ Develop reduced kinetic mechanism using the PFA method and perform validations through comparison with the predictions of the detailed mechanism;
⁃ Conduct CFD simulations using the newly developed reduced mechanism for small scale scenarios where test data are available for validation;
⁃ Extend CFD simulations to medium and large-scale scenarios for validation as well as applications.

Status

SIGNED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019