URBANRAD | Radiative transfer effects on air pollution dispersion in urban areas: from the street scale to the neighbourhood scale

Summary
This project aims at understanding the effects of radiative transfer on air pollution dispersion in urban areas at both the street scale and the neighbourhood scale. Numerical models will be developed, for that purpose, that will help design and manage our cities, buildings and traffic systems in order to produce sustainable, safer, healthier, and more comfortable urban environments.

Radiation modelling will be coupled with 3D fluid dynamics, urban geometry, particle and pollutant transport, traffic and environmental conditions to produce the first model able to take into account radiation transport effects at both street and neighbourhood scales. Benchmark numerical simulations at the street scale will provide detailed information on radiative transfer effects subject to various environmental conditions: presence of clouds, humidity, turbulence level, etc. These results will help to derive simple physically relevant models for the simulations at the, much more computationally expensive, neighbourhood scale. The intensive use of fully adaptive methods for both radiation and fluid dynamics will also contribute to make feasible the simulations at this scale.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/659442
Start date: 01-06-2015
End date: 31-05-2017
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

This project aims at understanding the effects of radiative transfer on air pollution dispersion in urban areas at both the street scale and the neighbourhood scale. Numerical models will be developed, for that purpose, that will help design and manage our cities, buildings and traffic systems in order to produce sustainable, safer, healthier, and more comfortable urban environments.

Radiation modelling will be coupled with 3D fluid dynamics, urban geometry, particle and pollutant transport, traffic and environmental conditions to produce the first model able to take into account radiation transport effects at both street and neighbourhood scales. Benchmark numerical simulations at the street scale will provide detailed information on radiative transfer effects subject to various environmental conditions: presence of clouds, humidity, turbulence level, etc. These results will help to derive simple physically relevant models for the simulations at the, much more computationally expensive, neighbourhood scale. The intensive use of fully adaptive methods for both radiation and fluid dynamics will also contribute to make feasible the simulations at this scale.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)