GW | Analysing the heavy element factories of the Universe : photometric and spectroscopic sample study of kilonovae

Summary
The recent first detection of gravitational waves from a binary neutron star merger and its associated optical counterpart, the so-called 'kilonova', opened up a new era of multi messenger astronomy. The intense photometric and spectroscopic campaign that followed provided tantalising evidence that kilonovae are a prime source of heavy elements in the Universe. Nevertheless, with just a single event, and with only rudimentary theoretical models, it remains unclear how important kilonovae are in enriching the cosmos. This project aims to address this issue by building the first sample of kilonovae through dedicated follow-up observations of future compact binary mergers detected with the LIGO/Virgo gravitational wave detectors, which will soon come back online. The three principle objectives will be to (i) determine the ejecta mass distribution of kilonovae, (ii) identify the composition of kilonova ejecta and (iii) understand the progenitor systems of kilonovae from their host galaxies. Working with Jesper Sollerman and his GREAT group at Oskar Klein Centre, I will have access to ENGRAVE and GROWTH, which are two leading projects set up with the explicit goal to follow-up and monitor gravitational wave electromagnetic counterparts. The group at Oskar Klein Centre is leading vital research in theoretical modelling of compact object mergers. Combining observational resources, theoretical models and my analytical expertise in transient astronomy, this project promises to greatly contribute to the investigation of gravitational wave sources, kilonovae and the nucleosynthesis of heavy elements.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/842471
Start date: 01-11-2019
End date: 31-10-2021
Total budget - Public funding: 191 852,16 Euro - 191 852,00 Euro
Cordis data

Original description

The recent first detection of gravitational waves from a binary neutron star merger and its associated optical counterpart, the so-called 'kilonova', opened up a new era of multi messenger astronomy. The intense photometric and spectroscopic campaign that followed provided tantalising evidence that kilonovae are a prime source of heavy elements in the Universe. Nevertheless, with just a single event, and with only rudimentary theoretical models, it remains unclear how important kilonovae are in enriching the cosmos. This project aims to address this issue by building the first sample of kilonovae through dedicated follow-up observations of future compact binary mergers detected with the LIGO/Virgo gravitational wave detectors, which will soon come back online. The three principle objectives will be to (i) determine the ejecta mass distribution of kilonovae, (ii) identify the composition of kilonova ejecta and (iii) understand the progenitor systems of kilonovae from their host galaxies. Working with Jesper Sollerman and his GREAT group at Oskar Klein Centre, I will have access to ENGRAVE and GROWTH, which are two leading projects set up with the explicit goal to follow-up and monitor gravitational wave electromagnetic counterparts. The group at Oskar Klein Centre is leading vital research in theoretical modelling of compact object mergers. Combining observational resources, theoretical models and my analytical expertise in transient astronomy, this project promises to greatly contribute to the investigation of gravitational wave sources, kilonovae and the nucleosynthesis of heavy elements.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018