SEX_FIGHT_SLEEP | A model to study how social interaction modulates sleep in the fruit fly Drosophila melanogaster

Summary
Sleep is a fascinating phenomenon and one of the least understood mysteries of biology. It is universal among the animal kingdom and most species devote a large part of their day to sleep, despite the risks of lowering their defenses against predators or not engaging in more productive activities such as foraging or mating.
In many animals, social interaction is a powerful modulator of sleep quality and quantity. In nature, animals are continuously exposed to a diverse variety of stimuli, and interactions with con-specifics represent a particularly relevant set of them. For Drosophila males, interaction with females is key to ensure reproduction, while interaction with other males can create antagonistic fights to compete for sexual partners, food or shelter.
Through this project, I propose to investigate if and how social interactions affect sleep need and sleep quality. Employing fruit flies it has been previously shown that male-male interaction during the night builds up sleep pressure, observable in the next day as marked increase in sleep. Recovery of sleep after sleep deprivation is also called “sleep rebound”, and in all species it is thought to be 1) at the basis of sleep homeostasis and 2) positively correlate with sleep deprivation. The longer an animal stay awake, the higher the sleep pressure and following rebound. Also, it has been described that previous sleep experience modulates antagonistic behaviours between males. Thus, bidirectional interplay between social interaction and sleep appears as a promising framework to address a main goal of modern neuroscience, understand how sleep is regulated and which sleep functions are.
I intend to use new developed behavioural paradigms and software that improve sleep analysis in combination with refined genetic tools available in Drosophila to extend our knowledge on the interaction between phylogenetically conserved behaviours, social interactions and sleep, which have a high impact on reproductive fitness.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/705930
Start date: 01-02-2017
End date: 31-01-2019
Total budget - Public funding: 183 454,80 Euro - 183 454,00 Euro
Cordis data

Original description

Sleep is a fascinating phenomenon and one of the least understood mysteries of biology. It is universal among the animal kingdom and most species devote a large part of their day to sleep, despite the risks of lowering their defenses against predators or not engaging in more productive activities such as foraging or mating.
In many animals, social interaction is a powerful modulator of sleep quality and quantity. In nature, animals are continuously exposed to a diverse variety of stimuli, and interactions with con-specifics represent a particularly relevant set of them. For Drosophila males, interaction with females is key to ensure reproduction, while interaction with other males can create antagonistic fights to compete for sexual partners, food or shelter.
Through this project, I propose to investigate if and how social interactions affect sleep need and sleep quality. Employing fruit flies it has been previously shown that male-male interaction during the night builds up sleep pressure, observable in the next day as marked increase in sleep. Recovery of sleep after sleep deprivation is also called “sleep rebound”, and in all species it is thought to be 1) at the basis of sleep homeostasis and 2) positively correlate with sleep deprivation. The longer an animal stay awake, the higher the sleep pressure and following rebound. Also, it has been described that previous sleep experience modulates antagonistic behaviours between males. Thus, bidirectional interplay between social interaction and sleep appears as a promising framework to address a main goal of modern neuroscience, understand how sleep is regulated and which sleep functions are.
I intend to use new developed behavioural paradigms and software that improve sleep analysis in combination with refined genetic tools available in Drosophila to extend our knowledge on the interaction between phylogenetically conserved behaviours, social interactions and sleep, which have a high impact on reproductive fitness.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)