ALPINE | Ultrastructural analysis of phosphoinositides in nerve terminals: distribution, dynamics and physiological roles in synaptic transmission

Summary
Phosphoinositides (PIs) are minor components of cell membranes, and play important roles in cellular functions. In chemical synapses in mammalian brain, each PI distributes different subcellular areas in nerve terminals, and cooperate with many proteins to regulate synaptic transmission machinery. To understand how PIs regulate synaptic transmission, the ultrastructural distribution pattern and dynamics of PIs at nerve terminals are crucial because PIs may functionally interact with proteins at domains of nano-meter ranges called active zones (AZs) or peri-AZs. However, their ultrastructural distribution and dynamics in nerve terminals are poorly investigated because of some technical difficulties. This research project aims to investigate (1) the ultrastructural distribution of PIs at AZs and peri-AZs in nerve terminals, (2) co-localization of PIs with presynaptic proteins related to synaptic transmission, (3) the ultrastructural dynamics of PIs and PI-protein coupling during synaptic transmission, and (4) the physiological roles of PI-protein couplings in synaptic transmission, using electron microscopic and electrophysiological techniques combined with optogenetics and biochemical tools. These highly-interdisciplinary approaches will unveil the physiological roles of PIs and PI-protein couplings in synaptic transmission, and is expected to give a fundamental breakthrough in understanding mechanisms of synaptic transmission.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/793482
Start date: 01-04-2018
End date: 31-03-2020
Total budget - Public funding: 178 156,80 Euro - 178 156,00 Euro
Cordis data

Original description

Phosphoinositides (PIs) are minor components of cell membranes, and play important roles in cellular functions. In chemical synapses in mammalian brain, each PI distributes different subcellular areas in nerve terminals, and cooperate with many proteins to regulate synaptic transmission machinery. To understand how PIs regulate synaptic transmission, the ultrastructural distribution pattern and dynamics of PIs at nerve terminals are crucial because PIs may functionally interact with proteins at domains of nano-meter ranges called active zones (AZs) or peri-AZs. However, their ultrastructural distribution and dynamics in nerve terminals are poorly investigated because of some technical difficulties. This research project aims to investigate (1) the ultrastructural distribution of PIs at AZs and peri-AZs in nerve terminals, (2) co-localization of PIs with presynaptic proteins related to synaptic transmission, (3) the ultrastructural dynamics of PIs and PI-protein coupling during synaptic transmission, and (4) the physiological roles of PI-protein couplings in synaptic transmission, using electron microscopic and electrophysiological techniques combined with optogenetics and biochemical tools. These highly-interdisciplinary approaches will unveil the physiological roles of PIs and PI-protein couplings in synaptic transmission, and is expected to give a fundamental breakthrough in understanding mechanisms of synaptic transmission.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017