AmnioticID | Understanding the identity of the amniotic fluid stem cells

Summary
The amniotic fluid surrounds and protects the foetus during development, providing trophic and mechanical support to its growth. This liquid contains a variety of cells shedding from embryonic and extra-embryonic tissues that have long been utilised for prenatal diagnosis. In a seminal 2007 article, Professor De Coppi identified in the amniotic fluid, a small population of cells with broad multi-lineage differentiation ability defined as Amniotic Fluid Stem Cells (AFSCs). AFSCs can be isolated, expanded and differentiated during gestation, making them ideal for the development of pre-/perinatal autologous regenerative medicine strategies. In the last decade, a series of studies focused on investigating the therapeutic relevance of the AFSCs for various tissue compartments, such as skeletal and cardiac muscle, lung and liver. However, very little is known about the AFSCs origin, lineage identity and role during human development. This knowledge gaps have relevant impact on these cells' clinical translation and a list of important questions remains to be addressed: Which tissue releases the AFSCs? Are these cells constantly generated, or part of a self-renewing niche? What is the function of the AFSCs during human development? This proposal aims at addressing these questions, by using a combination of next generation sequencing analyses, cell biology assays and in vivo linage tracing approaches. Ultimately defining the origin and identity of the AFSCs will not only increase our knowledge of their physiological role, but will also allow to better direct future studies on their therapeutic implications. Thanks to this project, I will gain a comprehensive, multi-faceted understanding of the biology and regenerative potential of AFSCs. This will open up new research agendas, foster international collaborations and provide me valuable transferrable skills of crucial relevance to develop my independent career, in line with the mission of the Marie Curie action.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/843265
Start date: 01-09-2019
End date: 31-08-2021
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

The amniotic fluid surrounds and protects the foetus during development, providing trophic and mechanical support to its growth. This liquid contains a variety of cells shedding from embryonic and extra-embryonic tissues that have long been utilised for prenatal diagnosis. In a seminal 2007 article, Professor De Coppi identified in the amniotic fluid, a small population of cells with broad multi-lineage differentiation ability defined as Amniotic Fluid Stem Cells (AFSCs). AFSCs can be isolated, expanded and differentiated during gestation, making them ideal for the development of pre-/perinatal autologous regenerative medicine strategies. In the last decade, a series of studies focused on investigating the therapeutic relevance of the AFSCs for various tissue compartments, such as skeletal and cardiac muscle, lung and liver. However, very little is known about the AFSCs origin, lineage identity and role during human development. This knowledge gaps have relevant impact on these cells' clinical translation and a list of important questions remains to be addressed: Which tissue releases the AFSCs? Are these cells constantly generated, or part of a self-renewing niche? What is the function of the AFSCs during human development? This proposal aims at addressing these questions, by using a combination of next generation sequencing analyses, cell biology assays and in vivo linage tracing approaches. Ultimately defining the origin and identity of the AFSCs will not only increase our knowledge of their physiological role, but will also allow to better direct future studies on their therapeutic implications. Thanks to this project, I will gain a comprehensive, multi-faceted understanding of the biology and regenerative potential of AFSCs. This will open up new research agendas, foster international collaborations and provide me valuable transferrable skills of crucial relevance to develop my independent career, in line with the mission of the Marie Curie action.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018