Summary
HydroCat proposes a simulation and theory study into the collective behaviour of catalytically-driven, self-propelled colloids. The first step of the investigation focusses on understanding the mechanism by which platinum-coated Janus particles self-propel on a single-particle level. This will be accomplished by modelling the two candidates for the mechanism, self-diffusiophoresis and self-electrophoresis, and directly comparing the behaviour of the hybrid-model to experimental results. Once sufficient insight has been achieved, the focus of the project will shift to the description of the collective behaviour of these particles. Here, HydroCat follows a three-pronged strategy: (i) development of a finely-resolved lattice-Boltzmann (LB) simulation that takes into account all relevant physical effects and is capable of simulating a large number of particles; (ii) coarse-grained molecular dynamics simulations to study the collective behaviour of these Janus colloids, which are benchmarked against the fine LB simulations; and (iii) a fully coarse-grained, field-theoretical description that uses input from both (i) and (ii). HydroCat will result in an improved understanding of the catalytic self-propulsion, which will serve as a solid foundation for the description of experiments and the development of applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/654916 |
Start date: | 16-11-2015 |
End date: | 15-11-2017 |
Total budget - Public funding: | 183 454,80 Euro - 183 454,00 Euro |
Cordis data
Original description
HydroCat proposes a simulation and theory study into the collective behaviour of catalytically-driven, self-propelled colloids. The first step of the investigation focusses on understanding the mechanism by which platinum-coated Janus particles self-propel on a single-particle level. This will be accomplished by modelling the two candidates for the mechanism, self-diffusiophoresis and self-electrophoresis, and directly comparing the behaviour of the hybrid-model to experimental results. Once sufficient insight has been achieved, the focus of the project will shift to the description of the collective behaviour of these particles. Here, HydroCat follows a three-pronged strategy: (i) development of a finely-resolved lattice-Boltzmann (LB) simulation that takes into account all relevant physical effects and is capable of simulating a large number of particles; (ii) coarse-grained molecular dynamics simulations to study the collective behaviour of these Janus colloids, which are benchmarked against the fine LB simulations; and (iii) a fully coarse-grained, field-theoretical description that uses input from both (i) and (ii). HydroCat will result in an improved understanding of the catalytic self-propulsion, which will serve as a solid foundation for the description of experiments and the development of applications.Status
CLOSEDCall topic
MSCA-IF-2014-EFUpdate Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all