MATISSE | Multifunctional Hierarchically-Structured Systems for Energy Storage Devices

Summary
The widespread use of portable devices, as well as the electrification of transport, require a new generation of energy storage devices that deliver higher specific performance than Li-ion batteries. By designing multifunctional materials that combine structural and electrochemical energy storage, an improvement in gravimetric and volumetric efficiency can be achieved. The research aim of this project is to develop Energy Storage Devices based on multifunctional hierarchically-structured systems. The success of the project will be driven by the combination of two strong and complementary areas of expertise: At Imperial and IMDEA, the fellow will work for 24 months in groups with an extensive experience of carbon and inorganic nanomaterials synthesis, modification, characterisation, and application, particularly on hierarchical systems. On the other hand, she will bring her own experience in developing and characterising electrodes and electrolytes for a wide range of batteries as well as supercapacitors. The interdisciplinary intersection of new materials chemistry, with electrochemical device engineering, and structural composite mechanisms, will provide a unique opportunity for rapid progress in both science and technology. The structural energy storage devices will be developed from technology readiness level 1 and to 4, in order to accelerate direct impact on industrial applications, for example in the automotive and electronics sectors. During the two-year project, the fellow and supervisor will disseminate their results to Industry, Academia and General Public through patents and articles in podcasts, newspapers and scientific journals. From the start, an individual career development plan for the fellow will be developed with the supervisor and will be reviewed regularly during the fellowship. Prof. Shaffer’s talents for both research and teaching will inspire the fellow to launch ambitious research and educational projects early in her academic career.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/838892
Start date: 05-08-2019
End date: 04-08-2021
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

The widespread use of portable devices, as well as the electrification of transport, require a new generation of energy storage devices that deliver higher specific performance than Li-ion batteries. By designing multifunctional materials that combine structural and electrochemical energy storage, an improvement in gravimetric and volumetric efficiency can be achieved. The research aim of this project is to develop Energy Storage Devices based on multifunctional hierarchically-structured systems. The success of the project will be driven by the combination of two strong and complementary areas of expertise: At Imperial and IMDEA, the fellow will work for 24 months in groups with an extensive experience of carbon and inorganic nanomaterials synthesis, modification, characterisation, and application, particularly on hierarchical systems. On the other hand, she will bring her own experience in developing and characterising electrodes and electrolytes for a wide range of batteries as well as supercapacitors. The interdisciplinary intersection of new materials chemistry, with electrochemical device engineering, and structural composite mechanisms, will provide a unique opportunity for rapid progress in both science and technology. The structural energy storage devices will be developed from technology readiness level 1 and to 4, in order to accelerate direct impact on industrial applications, for example in the automotive and electronics sectors. During the two-year project, the fellow and supervisor will disseminate their results to Industry, Academia and General Public through patents and articles in podcasts, newspapers and scientific journals. From the start, an individual career development plan for the fellow will be developed with the supervisor and will be reviewed regularly during the fellowship. Prof. Shaffer’s talents for both research and teaching will inspire the fellow to launch ambitious research and educational projects early in her academic career.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018