IceLab | Ice-ocean interactions during Heinrich Events in the Labrador Sea

Summary
Northern hemisphere ice sheets are particularly vulnerable to climate change as the Arctic is warming twice as fast as the rest of the planet. Scenarios of future ice sheet stability, however, are associated with significant uncertainty, due to a lack of understanding of the relevant internal climate feedbacks. These processes involve ocean-ice sheet interactions and the effects of sea ice on the terrestrial cryosphere. With increased societal concerns over rising sea levels, it is more than ever important to understand the implications of climate change for ice sheet stability. The key lies in understanding the response of past ice sheets to climate change.
Prominent episodes of past ice-sheet collapse are so-called Heinrich events during the last glacial period, originating in Hudson Strait. While modelling studies have long hinted at the importance of sea ice in the Labrador Sea for subsurface warming and ocean induced melting during Heinrich events, this has not been shown using proxy methods. My project will investigate the links and feedbacks of sea ice, ocean circulation, subsurface warming, and ice-sheet collapse in the Labrador Sea to determine the role of the coupled cryosphere-ocean system for ice sheet stability across. Additionally, the effect of enhanced freshwater discharge on the system will be documented and a spatial-temporal map of North Atlantic sea ice dynamics across Heinrich events will be constructed. I will apply an integrated approach of organic and inorganic geochemistry, using sea-ice biomarkers, foraminiferal isotopes, and foraminiferal trace metals (i.e. Mg/Ca) in combination with state-of-the-art dating and correlation techniques. The new records will provide important clues with respect to a potential oceanic trigger of Hudson Strait iceberg surges during Heinrich events as well as advancing our understanding of the coupled cryosphere-ocean system, vital to accurately predict mass loss from the Greenland ice sheet in the future.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/882893
Start date: 01-10-2020
End date: 30-09-2022
Total budget - Public funding: 207 312,00 Euro - 207 312,00 Euro
Cordis data

Original description

Northern hemisphere ice sheets are particularly vulnerable to climate change as the Arctic is warming twice as fast as the rest of the planet. Scenarios of future ice sheet stability, however, are associated with significant uncertainty, due to a lack of understanding of the relevant internal climate feedbacks. These processes involve ocean-ice sheet interactions and the effects of sea ice on the terrestrial cryosphere. With increased societal concerns over rising sea levels, it is more than ever important to understand the implications of climate change for ice sheet stability. The key lies in understanding the response of past ice sheets to climate change.
Prominent episodes of past ice-sheet collapse are so-called Heinrich events during the last glacial period, originating in Hudson Strait. While modelling studies have long hinted at the importance of sea ice in the Labrador Sea for subsurface warming and ocean induced melting during Heinrich events, this has not been shown using proxy methods. My project will investigate the links and feedbacks of sea ice, ocean circulation, subsurface warming, and ice-sheet collapse in the Labrador Sea to determine the role of the coupled cryosphere-ocean system for ice sheet stability across. Additionally, the effect of enhanced freshwater discharge on the system will be documented and a spatial-temporal map of North Atlantic sea ice dynamics across Heinrich events will be constructed. I will apply an integrated approach of organic and inorganic geochemistry, using sea-ice biomarkers, foraminiferal isotopes, and foraminiferal trace metals (i.e. Mg/Ca) in combination with state-of-the-art dating and correlation techniques. The new records will provide important clues with respect to a potential oceanic trigger of Hudson Strait iceberg surges during Heinrich events as well as advancing our understanding of the coupled cryosphere-ocean system, vital to accurately predict mass loss from the Greenland ice sheet in the future.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019