HPD-inv of TBR | (Homological Projective Duality)-invariance of the Tate, Beilinson and Riemann conjectures

Summary
This project will be carried out at the Warwick Mathematics Institute under the supervision of Prof. John Greenlees; I have worked for the past eight years at MIT and I will move in 2020 to the University of Warwick as an Associate Professor. Three of the most important conjectures in mathematics - the Tate conjecture, the Beilinson conjecture and the generalized Riemann hypothesis - concern the location and order of the zeros/poles of the L-functions associated to algebraic varieties. For example, in the particular case of an elliptic curve, the Beilinson conjecture reduces to the Birch and Swinnerton-Dyer conjecture, and in the particular case of a point, the generalized Riemann hypothesis reduces to the Riemann hypothesis. These are two of the seven Millenium Prize Problems. The first objective of this project is to prove that the conjectures of Tate, Beilinson, and Riemann, are invariant under homological projective duality in the sense of Kuznetsov. The second objective is to combine this invariance result with the different homological projective dualities in the literature in order to obtain not only a proof of the conjectures of Tate and Beilinson in numerous new cases but also an equivalence between the generalized Riemann hypothesis of very different algebraic varieties. These objectives will greatly improve the state-of-the-art of the Tate and Beilinson conjectures and will considerably deepen our understanding of the generalized Riemann hypothesis. In order to achieve them, I will combine Kontsevich's noncommutative viewpoint on algebraic geometry with mathematical tools from several different areas (e.g., algebraic topology, derived categories, algebraic K-theory, etc). This will enhance my creative and innovative potential, will foster my professional maturity and independence, will diversify my technical skills, and also will enable me to receive advanced training. Hence, this project is directly aligned with the MSCA-IF-EF-RI objectives.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/892994
Start date: 01-09-2020
End date: 31-08-2022
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

This project will be carried out at the Warwick Mathematics Institute under the supervision of Prof. John Greenlees; I have worked for the past eight years at MIT and I will move in 2020 to the University of Warwick as an Associate Professor. Three of the most important conjectures in mathematics - the Tate conjecture, the Beilinson conjecture and the generalized Riemann hypothesis - concern the location and order of the zeros/poles of the L-functions associated to algebraic varieties. For example, in the particular case of an elliptic curve, the Beilinson conjecture reduces to the Birch and Swinnerton-Dyer conjecture, and in the particular case of a point, the generalized Riemann hypothesis reduces to the Riemann hypothesis. These are two of the seven Millenium Prize Problems. The first objective of this project is to prove that the conjectures of Tate, Beilinson, and Riemann, are invariant under homological projective duality in the sense of Kuznetsov. The second objective is to combine this invariance result with the different homological projective dualities in the literature in order to obtain not only a proof of the conjectures of Tate and Beilinson in numerous new cases but also an equivalence between the generalized Riemann hypothesis of very different algebraic varieties. These objectives will greatly improve the state-of-the-art of the Tate and Beilinson conjectures and will considerably deepen our understanding of the generalized Riemann hypothesis. In order to achieve them, I will combine Kontsevich's noncommutative viewpoint on algebraic geometry with mathematical tools from several different areas (e.g., algebraic topology, derived categories, algebraic K-theory, etc). This will enhance my creative and innovative potential, will foster my professional maturity and independence, will diversify my technical skills, and also will enable me to receive advanced training. Hence, this project is directly aligned with the MSCA-IF-EF-RI objectives.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019