PlastiMap | Multi-dimensional mapping of the interplay between stability and plasticity in the adult visual pathway

Summary
Whether and how adult brains retain the ability to adapt their function and structure, especially in the context of learning, injury or restorative treatment is a fundamental question in neuroscience. In particular, understanding how neurons rewire or adapt during plasticity has been limited to (i) local electrophysiological measurements that lack the ability to report on brainwide aspects of plasticity, (ii) terminal experiments preventing longitudinal exploration in the same animal, or (iii) brainwide functional imaging with little insight into the underlying neural activity. Therefore, despite the scientific and clinical relevance of deciphering the neural substrate of neuroplasticity, a mechanistic, brain-wide study bridging the multiple spatiotemporal scales required for understanding neuroplasticity, is still lacking. We here propose to combine cutting edge functional Magnetic Resonance Imaging with calcium recordings in an animal model of visual pathway plasticity. First, we will use this exceptional multi-modal system to investigate the neurovascular coupling during visual stimulation and at-rest. Second, we will apply advanced computational neural models to characterize the functional organization of receptive fields and underlying circuitry across the rodent visual pathway and cortical layers. Third, we aim to map the time-course of functional reorganization and restructuring of neural circuitry following damage to the visual system. To do so, we will induce localized monocular retinal lesions and quantify changes in cortical organization and micro-circuitry resulting from the damage under differential visual experience (dark/ light exposure). This project will provide the first mechanistic description of adaptive circuitry processes and retinotopic (re)organization of the entire visual pathway associated with experience-dependent plasticity. Clinically, this is critical to assess the optimal timing for visual restorative and rehabilitation treatments.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101032056
Start date: 01-09-2021
End date: 28-01-2024
Total budget - Public funding: 147 815,04 Euro - 147 815,00 Euro
Cordis data

Original description

Whether and how adult brains retain the ability to adapt their function and structure, especially in the context of learning, injury or restorative treatment is a fundamental question in neuroscience. In particular, understanding how neurons rewire or adapt during plasticity has been limited to (i) local electrophysiological measurements that lack the ability to report on brainwide aspects of plasticity, (ii) terminal experiments preventing longitudinal exploration in the same animal, or (iii) brainwide functional imaging with little insight into the underlying neural activity. Therefore, despite the scientific and clinical relevance of deciphering the neural substrate of neuroplasticity, a mechanistic, brain-wide study bridging the multiple spatiotemporal scales required for understanding neuroplasticity, is still lacking. We here propose to combine cutting edge functional Magnetic Resonance Imaging with calcium recordings in an animal model of visual pathway plasticity. First, we will use this exceptional multi-modal system to investigate the neurovascular coupling during visual stimulation and at-rest. Second, we will apply advanced computational neural models to characterize the functional organization of receptive fields and underlying circuitry across the rodent visual pathway and cortical layers. Third, we aim to map the time-course of functional reorganization and restructuring of neural circuitry following damage to the visual system. To do so, we will induce localized monocular retinal lesions and quantify changes in cortical organization and micro-circuitry resulting from the damage under differential visual experience (dark/ light exposure). This project will provide the first mechanistic description of adaptive circuitry processes and retinotopic (re)organization of the entire visual pathway associated with experience-dependent plasticity. Clinically, this is critical to assess the optimal timing for visual restorative and rehabilitation treatments.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships