Summary
Nowadays, CH4 and CO2 emissions represent approximately 90% of the total greenhouse gas (GHG) inventory worldwide, and their share is expected to increase due to their industrial and organic-based nature as well as the increasing world population. The European Union, due to the urgent need to maintain global average temperatures 2ºC below pre-industrial levels, has developed clear targets in the Horizon H2020 climate actions based on building a low-carbon, climate resilient future as well as greening the economy. This situation requires intensive research on novel, cost-effective, and environmentally friendly bio-technological strategies for GHGs treatment focused on creating a climate-neutral scenario and a green economy. In this context, the ENHANCEMENT project fulfill these requirements with the simultaneous bioconversion of both CH4 and CO2 into the most expensive compound produced by microorganisms – ectoine (14,000 $ kg-1) – using halophilic ectoine producers from the genus Halomonas. This is the first and only technology that can abate both GHGs simultaneously, resulting only in water, cells, and resting metabolites with a high market value. However, the market uptake of this biotechnology requires: 1) unravelling the metabolic pathways that allow the members of the Hallomonas genus to transform CH4 and CO2 simultaneously into ectoine, and 2) testing the biotechnological potential of this new platform capable of creating value out of GHG mitigation through its implementation under discontinuous and continuous operation in high mass transfer bioreactors. In this context, the ENHANCEMENT project represents a multi- and inter-disciplinary investigation focused on achieving the Horizon H2020 goals through developing a sustainable GHG bioeconomy. Moreover, it will also strengthen the applicant’s curriculum and provide her with the soft skills required to take the next step of her scientific career towards becoming an R3 – Experienced Researcher.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/897284 |
Start date: | 01-10-2020 |
End date: | 30-09-2022 |
Total budget - Public funding: | 187 572,48 Euro - 187 572,00 Euro |
Cordis data
Original description
Nowadays, CH4 and CO2 emissions represent approximately 90% of the total greenhouse gas (GHG) inventory worldwide, and their share is expected to increase due to their industrial and organic-based nature as well as the increasing world population. The European Union, due to the urgent need to maintain global average temperatures 2ºC below pre-industrial levels, has developed clear targets in the Horizon H2020 climate actions based on building a low-carbon, climate resilient future as well as greening the economy. This situation requires intensive research on novel, cost-effective, and environmentally friendly bio-technological strategies for GHGs treatment focused on creating a climate-neutral scenario and a green economy. In this context, the ENHANCEMENT project fulfill these requirements with the simultaneous bioconversion of both CH4 and CO2 into the most expensive compound produced by microorganisms – ectoine (14,000 $ kg-1) – using halophilic ectoine producers from the genus Halomonas. This is the first and only technology that can abate both GHGs simultaneously, resulting only in water, cells, and resting metabolites with a high market value. However, the market uptake of this biotechnology requires: 1) unravelling the metabolic pathways that allow the members of the Hallomonas genus to transform CH4 and CO2 simultaneously into ectoine, and 2) testing the biotechnological potential of this new platform capable of creating value out of GHG mitigation through its implementation under discontinuous and continuous operation in high mass transfer bioreactors. In this context, the ENHANCEMENT project represents a multi- and inter-disciplinary investigation focused on achieving the Horizon H2020 goals through developing a sustainable GHG bioeconomy. Moreover, it will also strengthen the applicant’s curriculum and provide her with the soft skills required to take the next step of her scientific career towards becoming an R3 – Experienced Researcher.Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)