EVERPHOT | Molecular mechanisms of photoprotection in plants.

Summary
Photosynthesis is a biological process of primary importance, as it provides the energy that drives food, feedstock and biofuel production and mitigates climate change. Light in excess of photosynthetic capacity can be damaging, thus ways to protect against damage have evolved, including ways to minimize light absorption, detoxify reactive oxygen species generated by excess light, and dissipate excess absorbed light. Together, these processes are known as photoprotection. Despite the physiological importance of photoprotection, the molecular mechanisms that protect against light stress remain largely unknown, especially those that protect from prolonged light stress. The objective of the proposed research project is to solve molecular mechanisms of photoprotection in plants. My specific aims are to 1) investigate the function of known involved factors in sustained energy dissipation in the model plant Arabidopsis, 2) identify novel molecular players and 3) use an organism that is genetically adapted to cope with high light stress, the evergreen Norway spruce. The research will be carried out in my laboratory where genetics, biochemistry, biophysics and physiological approaches will be combined to address this problem. The research in my group will provide insights into fundamental mechanisms of light energy capture, utilization and dissipation and will lead to the identification of new targets for manipulation, key to increasing yields of energy and food crops.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/845687
Start date: 01-01-2020
End date: 31-12-2021
Total budget - Public funding: 203 852,16 Euro - 203 852,00 Euro
Cordis data

Original description

Photosynthesis is a biological process of primary importance, as it provides the energy that drives food, feedstock and biofuel production and mitigates climate change. Light in excess of photosynthetic capacity can be damaging, thus ways to protect against damage have evolved, including ways to minimize light absorption, detoxify reactive oxygen species generated by excess light, and dissipate excess absorbed light. Together, these processes are known as photoprotection. Despite the physiological importance of photoprotection, the molecular mechanisms that protect against light stress remain largely unknown, especially those that protect from prolonged light stress. The objective of the proposed research project is to solve molecular mechanisms of photoprotection in plants. My specific aims are to 1) investigate the function of known involved factors in sustained energy dissipation in the model plant Arabidopsis, 2) identify novel molecular players and 3) use an organism that is genetically adapted to cope with high light stress, the evergreen Norway spruce. The research will be carried out in my laboratory where genetics, biochemistry, biophysics and physiological approaches will be combined to address this problem. The research in my group will provide insights into fundamental mechanisms of light energy capture, utilization and dissipation and will lead to the identification of new targets for manipulation, key to increasing yields of energy and food crops.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018